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Abstract

The role of thermal stresses in the failure of layered dissimilar materials is investigated

using an extension to simple bimetallic thermostat theory. Of particular interest are the

stresses generated in a freely supported semi-infinite layered beam with prescribed heat flux

on the exposed end. The applicability of the solution to composite laminates is addressed.

Classical bimetallic thermostat solutions do not account for specified end tractions.

For the freely supported thermostat, the classical solution yields self-equilibrating (but

nonzero) axial stress distributions on the ends. Recently, other investigators have used

the concept of interfacial compliance to formulate the bimetallic thermostat problem as a

second-order boundary value problem, allowing for enforcement of the traction-free bound-

ary conditions. This solution technique also provides for the calulation of interlaminar

stresses, which cannot be obtained from the simple theory. The published work using the

interfacial compliance concept was limited to beams of finite length subjected to a uni-

form temperature increase. In the present work, the bimetallic thermostat theory based

on the interfacial compliance concept is extended to apply to semi-infinite layered beams

subjected to end heating. A closed-form solution to the problem is then obtained.

The solution includes all the assumptions of Bernoulli-Euler beam theory and is

not applicable within about one beam thickness (St Venant boundary region) of the end.

Various classes of layered materials are analyzed to determine if significant stresses exist

outside the boundary region. It is determined that thermal stresses of sufficient magnitude

to cause failure are confined to the domain of nonapplicability (i. e. within the boundary

region) if all the layers of a layered beam are poor thermal conductors. Significant axial

and bending stresses are found to exist outside of the boundary region for layered beams

in which one or more layers are relatively good thermal conductors. Very high stresses are

found to exist in good conductors bonded to relatively poor conductors of similar stiffness.

Significant interlaminar stresses are found to exist only in the boundary region, regardless

of the magnitude of layer thermal conductivities.

xvi



Thermal Stresses in End-Heated

Layered Media

I. INTRODUCTION

1.1 Background

While working as a laser effects research engineer, the author was privileged to partic-

ipate in experiments conducted to characterize the response of filament-wound composite

pressure vessels (or bottles) to high energy laser radiation. The primary objective of the

experiments was to define the laser beam parameters responsible for causing the bottle

failure mode to transition from venting (i. e. depressurization over a relatively long time

scale) to catastrophic bursting at a given value of the internal pressure.

Extensive modeling efforts were conducted in conjunction with the experiments in

order to allow interpretation of the results and to facilitate a better understanding of the

basic physics responsible for observed test results. The literature shows that six indepen-

dent models evolved from the modeling activities. While all of them are not reported in

the open literature, they are all documented in some form (1-6). All six models use finite

elements to address fracture mechanics issues. Linear elastic fracture mechanics and free-

edge delamination appear to be the phenomena of most interest to the researchers. While

one of the models (2) accounts for through-the-thickness conduction, none of the existing

models address the problem of thermal transport along the fiber direction and what role,

if any, thermal stresses play in the failure of composite cylinders.

Interestingly, materials characterization tests on small test specimens indicated that

heat loss via in plane conduction was significant. Also, postmortem analysis of numerous

bottles revealed subsurface damage in the fiber direction at distances relatively far removed

from the laser beam impingement area. As carbon and graphite fibers are known to be

good conductors in the longitudinal direction, it is possible that conduction along the

fibers away from the laser beam could cause thermal stresses to arise at some distance
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removed from the immediate damage area. If thermal stresses of sufficient magnitude

arise, the material will fail due to excessive stresses within one of the constituents or due

to delamination along the interface. These failure possibilities, coupled with the absence

of in-plane thermal transport consideration in the existing bottle failure models, strongly

suggests the need for more research in this area.

1.2 The Overall Problem

The problem under consideration is quite complex and a comprehensive model should

include a thorough treatment of the following issues:

" The physics of laser/target interaction, including;

- Coupling of incident laser irradiation,

- Ablation of target material.

* Heat transfer from the ablating region, including;

- Lateral and transverse conduction,

- Radiation to the environment,

- Convection due to high velocity flow.

" The state of stress in the damaged cylinder, including;

- Stress distribution around the impingement area,

- Interlaminar stresses,

- Thermal stresses,

- Thermal degradation of mechanical properties.

" The target response, including;

- Application of the most appropriate failure criteria,

- Analysis of fracture following the onset of failure,

- Determination of failure time and mode (i. e. vent or catastrophic burst).

1-2



The development of such a comprehensive model is dependent on the careful and

thorough analyses of several simplified problems. The basic goal of the current research is to

develop a simple thermoelastic solution which can be incorporated into a more sophisticated

analytical model capable of predicting the failure mode and the time-to-failure for end-

heated layered dissimilar media subjected to a wide variety of thermal boundary conditions.

The specific problem to be studied in the current work is that of thermal transport in

the lengthwise direction and the resulting thermal stresses. Valuable insight into this

problem is obtained from a study of thermal stresses in layered beams with the appropriate

temperature distribution. Therefore, an engineering solution to the problem of layered

beams, with particular emphasis on lengthwise temperature variations and interlaminar

stresses, is obtained and presented. Material failure predictions are then made based on

the calculated values of interlaminar, extensional and bending stresses.

1.3 The Simplified Problem

When layered dissimilar media with different coefficients of thermal expansion are

heated, thermal stresses are generated due to unequal thermal expansion in the layers.

The stresses occur because free expansion of the layers is restricted by neighboring layers.

Thermal stresses of significant magnitude are produced in layered dissimilar media sub-

jected to even the simplest of temperature distributions, such as a uniform temperature

increase or decrease. For example, two common engineering applications where thermal

stresses due to uniform temperature distributions are of importance are; the deflection of a

bimetallic thermostat, and the residual stresses present in laminated composite materials

fabricated at one temperature but used in service at a significantly different temperature.

If thermal stresses of sufficient magnitude arise in a layered medium, it will suffer damage

due to failure of one or more of the individual layers or to delamination between layers.

As documented in Chapter II, most of the existing solutions to the problem of thermal

stresses in layered dissimilar media are for temperature distributions that are either uniform

or vary in the thickness direction. This is especially true concerning closed form engineering

or strength of materials solutions. A fundamentally different problem results when a semi-

infinite (or very long) layered dissimilar medium is heated on one end and maintained at
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a constant temperature at infinity (or at the other end for very long finite media). The

possibilities of failure are the same as for the uniform temperature problem. Stresses of

sufficient magnitude will cause damage due to failure of individual layers or to delamination

between layers. The temperature distribution is, however, quite nonuniform, decaying

rapidly from its maximum value at the heated end to the prescribed temperature at infinity.

One expects, therefore, that the thermal stress distribution in end-heated, layered

media will generally differ from the distribution in the same media subjected to uniform

temperature variations. The objectives of the present work are to obtain a closed form

engineering solution and to discuss its applicability to various types of layered dissimilar

media.

The present study adds the capability to obtain closed form engineering calculations

of the thermal stresses in layered dissimilar media subjected to known thermal boundary

conditions resulting in nonuniform temperature distributions. This is an extension over the

previous work, most of which has been restricted to layered media with uniform tempera-

ture distributions. Whereas a few of the previous studies address temperature variations in

the thickness direction, the present study specifically addresses the problem of long, layered

media with temperature variations in the lengthwise direction. The present study adds

the capability to obtain closed form expressions for the thermal stresses in semi-infinite

layered media. Most of the previous studies are for media of finite length and require that

the temperature be symmetric about the middle (in the length direction) of the medium.

The present study adds the capability to analyze many transient problems. Many of the

previous studies were incapable of addressing transient problems because of the inherently

nonuniform nature of transient temperature distributions. Finally, the present study adds

the capability to analyze layered media of infinite length with a line heat source at the

origin.

We now give a detailed description of the problem to be studied in the present work.

The problem is to calculate the temperature and stresses in a layered Bernoulli-Euler beam

consisting of two or more bonded dissimilar materials. Each individual layer is assumed to

be isotropic, homogeneous and linearly elastic. The standard small displacement assump-

tions are invoked. The stress-strain relationship is assumed to be linear, thus restricting
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the application to temperatures well below the melting or ablation temperature of the con-

stituent materials. Each layer is assumed to be in perfect thermal and mechanical contact

with neighboring layers. In general, each layer will have different thermal and mechanical

material properites than adjacent layers. The beam is freely supported with no applied

loads or tractions and with no residual stresses. The temperature is held constant at in-

finity, and the end is subjected to a known heat flux beginning at time zero. Initially,

the beam is at a uniform temperature throughout. Convection and radiation heat transfer

along the top and bottom surfaces of the beam is assumed to be negligible. The problem

is assumed to be quasi-steady state, that is, while the temperature is a function of time,

mechanical inertia terms in the equations of equilibrium are negligible. Therefore, time

is merely a parameter in the equations for stress, strain and displacement. Finally, an-

other key assumption is that the volumetric expansion occurs on a long enough time scale

such that it does not cause the temperature to change. This final assumption allows the

equilibrium and energy equations to be decoupled (7:Section 2.1). The temperature and

stress distributions may then be calculated separately with temperature changes preceding

stresses.

The temperature distribution in a two-dimensional bimaterial beam without convec-

tion and radiation transfer on its surfaces is governed by Fourier's law of heat conduction.

In addition to satisfying the above initial and boundary conditions, the temperature and

conduction in the thickness direction must also be continuous along the interface in order

for the assumption of perfect thermal contact to be valid. If one of the constituents of the

layered beam is a poor conductor while the other is a good conductor, the temperature

distribution may be approximated as one-dimensional (i. e. the insulated rod solution).

The thermal stress distribution in a bimaterial Bernoulli-Euler beam is determined

by forcing the curvature of the two layers to be identical and by enforcing strain conti-

nuity along the interface. The interface strain in a bimaterial beam with a nonuniform

temperature distribution consists of an extensional term, a bending term, a term due to

free thermal expansion, and a term due to the nonuniformity of the temperature. Note

that for the mechanically free beam, the extensional and bending strains are entirely the

result of material constraints against free thermal expansion.
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1.4 Summary

The primary objectives of the present work are to obtain a simple analytical solution

to the problem of thermal stresses in end-heated layered beams and use the resulting

solution to make failure predictions. There appears to be very little literature addressing

the problem as stated. However, there are numerous publications which address thermal

stresses in layered beams and bimetallic strips subjected to less complicated temperature

distributions. A review of the pertinent literature is now presented.
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II. LITERATURE SURVEY

2.1 Elasticity Solutions

Elasticity solutions of the bonded strip problem are typically derived from Airy stress

function solutions of the problem of bonded quarter-spaces. These solutions all indicate a

singularity in the interlaminar stresses at the free-edge contact point. The free-edge contact

point is the point of intersection between the interface of bonded dissimilar materials and

the free edge. This point is also referred to as the corner point and is usually chosen for the

origin of coordinates in Airy stress function analyses of bonded dissimilar materials. The

two-dimensional solutions of bonded quarterplanes by Dundurs (9, 10) and Bogy (11, 12)

are perhaps the classical solutions of this type. Raju et. al. (13) reported stress singulari-

ties for certain laminates but not for all laminates. Some other recent singularity solutions

are those by Delale (14) and Blanchard and Ghoneim (15), in which a singular solution

was developed using an eigenfunction expansion technique. There are many other singular

solutions in the literature. (For example, see (16) and (17).) None of the singularity solu-

tions considered appeared to be applicable to layered beams with nonuniform temperature

distributions. Also, in an actual layered beam, there must be yielding or other forms of

stress relaxation at the corner as predicted by the elasticity solutions. Therefore, some

other solution must apply at this point and possibly in its neighborhood as well. For these

reasons, an approximate nonsingular solution is sought for the problem at hand. It is

anticipated that the approximate solution may not be accurate at and in the near vicinity

of the corner.

2.2 Isothermal Solutions

There are no mechanical loads being applied to the bonded beams of interest in the

current work. All stresses are brought about solely due to the nonuniform nature of the

temperature distribution and the difference in material coefficients of thermal expansion.

However, it is well-known that thermoelastic solutions can be found in theory from con-

sideration of the appropriate isothermal problem (18). Only a few simple problems lend

themselves to practical exact solutions using this approach. Nevertheless, since a theo-
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retical solution exists, it is expected that phenomena observed in bonded materials under

mechanical loads will be present in thermal problems as well. This should be especially

true of the behavior of solutions near expected points of singularity. In other words, if me-

chanical solutions show a singularity to exist at the free-edge interface point, a singularity

is also expected in thermal problems dealing with the same structure.

Pipes and Pagano (19) published what has become known as a classical solution

dealing with free-edge interlaminar stresses. Classical elasticity theory was used to write

the governing field equations. These were then solved using finite difference methods. The

authors proclaim the solution to be an exact solution suitable for free-edge stress deter-

mination, subject to the generalized plane stress assumption. Interlaminar stresses were

found to increase rapidly near the corner, indicating the possibility of a singularity there.

Furthermore, the edge phenomena were observed to be applicable within only about one

laminate thickness of the edge. Thus, edge effects are indeed confined to edges. The au-

thors compared their results to those of Puppo and Evensen (20), who modelled a laminate

as anisotropic layers joined with thin isotropic layers of adhesive. An eigenvalue problem

was then formulated by assuming exponential forms of the displacements. Interlaminar

normal stress was not addressed and the interlaminar shear stress was found to be zero in

infinite laminates and maximum at the edge of finite laminates.

Goland and Reissner (21) appear to be the first to study peeling stresses, which they

call tearing stresses. They did so in the course of analyzing stresses in the cement layer of

cemented joints. They considered the beam to be a homogeneous beam with discontinuous

thickness variation. The tearing stress was found to be high at the free edges, and was

proposed as the primary failure mechanism in cemented joints.

While reviewing the literature on free-edge interlaminar stresses in bonded orthotropic

laminae, Raju, Whitcomb and Goree (13) discovered an interesting discrepancy between

published values of the interlaminar normal stress. Not only did the stresses for identical

problems differ in magnitude near the free edge, but they also differed in sign. Due to

the presence of a singularity at the corner, different solution techniques were expected to

produce magnitude differences, but sign differences were unexpected. They analyzed the

problem and suggested that the underlying cause of the sign discrepancy was the usual
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assumption of symmetry in the stress tensor, which they showed to be invalid at singular

points. They then performed careful finite element analyses of the problem with succes-

sively finer mesh sizes. This research showed the finite method to be accurate except for in

the elements adjacent to the singular point. They showed their solutions to satisfy equilib-

rium considerations on a lamina, whereas the finite difference solution reviewed failed to

satisty all the equilibrium equations. A very important conclusion was that the free-edge

singularity effect is confined to a region very near the free edge. For the specific prob-

lem addressed they found no effects of the singularity to exist beyond a distance of about

.08h from the free edge, where h was the lamina thickness. The authors also commented

that, while the shear stress should be zero at the corner because no shear load is applied

on this face, all traditional solution techniques, both numerical and theoretical, predict a

singularity at this point.

Ueng and Zhang (22) observed that, while many interlaminar stress solutions ex-

isted in the literature, they were cumbersome and impractical for thick laminates. They

then developed an approximate solution by assuming the interlaminar stresses could be ex-

pressed as simple power series in the neighborhood of the free edge. In order to accomplish

this, they divided the laminate into two regions; an end-effect region near the free edge,

and a central region where classical laminated plate theory (CLPT) applies. They chose

the effective edge width of the end-effect region to be either one or two laminate thick-

nesses, depending on which interlaminar stresses were being calculated. They noted that

their solution required selection of the proper effective edge width in order for the results

to be accurate, and that their particular selection seemed to explain some discrepancies

discovered in the literature.

Lu and Liu (23) developed a theory for thick laminates which enforced interlaminar

shear stress and displacement continuity for laminates with transverse shear deformation.

Interlaminar normal stresses were not considered in their study. Their solution technique

allows for determination of interlaminar shear stress directly from the constitutive relations,

as opposed to the traditional method of using equilibrium considerations to recover shear

stress after the fact. Their results were in excellent agreement with the benchmark results

of Pipes and Pagano (19).
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Kassapoglou and Lagace (24) used the Force Balance Method and the principle of

minimum complementary energy to obtain closed-form expressions in angle-ply and cross-

ply laminates due to mechanical loading.' An interesting feature of their solution was

that the approximate solution developed satisfies the boundary conditions exactly. When

comparing their solution to several others, they found all to match the Classical Lami-

nated Plate Theory (CLPT) solution far from the free edge, but they found considerable

differences in the published values of stress very near the edge. Some predicted nonzero

values of the interlaminar shear stress at the free edge, which is somewhat consistent with

the singularity solutions from elasticity theory, but seems to contradict the traction-free

boundary conditions. The solution was obtained by requiring force and moment equilib-

rium to be satisfied in any section of the laminate. The stresses were then assumed to have

a certain characteristic, exponential form. The unknown constants in these functions were

then obtained by minimizing the complementary energy.

2.3 Solutions for Uniform Temperature Change

Very few solutions were uncovered addressing the problem of layered systems sub-

jected to nonuniform temperature increases. With Goodier's method (18), one may deter-

mine the solution to a thermal problem from an equivalent isothermal problem where the

effects of temperature are replaced by a body force distribution. The method is theoreti-

cally applicable for arbitrary temperature distributions, but in order to obtain solutions to

physical problems, one must solve a problem in potential theory. The solution is tenable

only for certain temperature distributions. An excellent example of applying Goodier's

method to thermoelastic problems may be found in reference (25). A few solutions for spe-

cific types of nonuniform temperatures were found and are discussed later. No solutions

were found for problems with temperatures similar to those in a long end-heated beam.

The classical engineering solution to the problem of thermal stresses in layered mate-

rials is the bi-metal thermostat solution due to Timoshenko (8). Timoshenko used standard

Bernoulli-Euler beam theory to develop equations for the temperature of operation and

'The mechanical load consisted of normal traction in one direction only.
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the total deflection during heating. He considered a layered strip of unit width with no

applied forces or tractions. Bending due to thermal effects was simulated by applying

fictitious concentrated forces and moments to the ends of the strip. The governing equa-

tions in Timoshenko's analysis were obtained from enforcing the curvature and interface

strain of the two materials. The only stresses resulting from his theory are the axial and

bending normal stresses. Interlaminar stresses cannot be calculated using his theory. He

commented that there would be interlaminar normal and shear stresses for layers of dif-

ferent thickness or different moduli of elasticity, but only interlaminar shear stresses if

both layers had the same thickness and modulus of elasticity. However, he described these

stresses to be of local effect, confined very near the ends of the strip. He then showed that

a fair amount of accuracy was possible when treating the layered strip as a homogeneous

strip with material properties corresponding to the average of the constituent properties,

for the case of equal layer thicknesses. Timoshenko applied his theory to several different

beam configurations.

Pionke and Wempner (26) compared the stresses and deflections in bimetallic ther-

mostats as calculated from elementary bonded beam theory, elementary bonded plate

theory and finite element methods.2 They found the closed form solutions to be adequate

for calculating deflections and interior stresses, but inadequate for calculating interfacial

stresses. Their criteria for an elementary solution to be called adequate seems to be how

well it agrees with their finite element solutions. The bonded beam approximation was

found to be adequate for calculating deflections while the the bonded plate approxima-

tion was found to be adequate for calculating both deflections and interior stresses. Note

that interior stresses are bending stresses since interfacial stresses exist only near the free

edges. The closed form solutions predicted finite values of the interfacial normal stress,

whereas elasticity solutions insist on a singularity at the corner. Finally, the elementary

closed form solutions failed to adequately predict interfacial stress magnitudes, gradients

and signs very near the free edges.

2 Note that the elementary plate solution can be obtained from the elementary beam solution by an
appropriate change of Poisson's ratio.
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Chen, Cheng and Gerhardt (27) considered the interface region of a bimaterial beam

to be a third material with different material properties than either of the adjacent layers.

Particular emphasis was placed on enforcing the traction-free boundary conditions on the

ends of the beam. The problem was solved using a two-dimensional elasticity approach.

The governing equations were solved using the principle of complementary energy. They

found the peak interlaminar normal stress to be relatively independent of the thickness of

the adhesive layer while the peak interlaminar shear stress was found to decrease as the

thickness of the adhesive layer was increased. Also, they concluded that increasing the

length of the beam had no effect on the interlaminar stresses. The only difference in this

case was that the long mid-section of the beam, where interlaminar stresses are negligible,

was longer.

Williams (28) considered the effects of the adhesive layer in a two-layered plate with

particular emphasis on enforcing the traction-free boundary conditions on the ends of the

plate. He solved the problem by developing an inner solution, valid only near the ends, and

forcing it to match the classical Timoshenko (8) solution at the edge of the inner region.

The method of matched asymptotic expansions was used in this process.

Seo et. al. (29) performed a systematic analysis to assess the role of various nondi-

mensional parameters in the formation of thermal stresses in ceramic-metal plates. The

parameters of interest were the ratio of Young's moduli, Poisson's ratios and the layer

thickness-to-length ratios. Analyses were performed using both finite element methods

and boundary element techniques, with the results from the two being indistinguishable.

The variation of Poisson's ratios was shown to have practically no effect on thermal stresses.

Variations of the ratio of Young's moduli and thickness-to-length ratios, on the other hand,

produced significant differences in the thermal stresses. The most damaging stress, the in-

terlaminar normal stress, was shown to achieve a maximum value at some ratio of Young's

moduli. For small values of thickness-to-length ratios, which is the case for beams, the

axial stresses were shown to be fairly constant over most of the length, except for near the

ends, where they rapidly fell to zero. The interlaminar stresses (both shear and normal)

remained constant (and approximately zero) over the same distance where axial stresses

were nonzero, and then rapidly climbed to their peak values at the ends.
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Chen and Nelson (30) considered the problem of bonded dissimilar materials where

the interlaminar regions were considered to be a different material than either of the

primary constituents. For example, their analysis would apply to structures such as a metal

bonded to a different material with a nonmetallic adhesive. They considered three different

materials with two different bond regions and two materials with a single bond region. In

the three-material problem, bending was not allowed, whereas in the two-material problem,

an analysis was conducted both with and without bending to assess the effects of bending

on interlaminar shear stress. It is intuitively evident that unrestrained, bonded, dissimilar

materials would bend when heated. Simple force and moment equilibrium considerations

were used to derive the appropriate equations for stress and force. In all cases considered,

shear stress was shown to be zero over most of the length, with rapid increase occurring

near the free edge. Tensile stress, the authors' name for interlaminar normal stress, was

found to behave in a similar manner for the problems with bending. There was no tensile

stress when bending was disallowed. The tensile stress was shown to change sign near

the edge, while shear stress maintained the same sign. According to the authors this is a

common phenomenon in this type of problem. An additional conclusion was that bending

serves to relax shear stress at the free edge.

Weitsman (31) studied the interlaminar stresses in a thin layer of adhesive situated

between two rigid plates, when the edge of the layer was subjected to moisture or when the

entire assembly was raised to an elevated temperature. An analysis based on variational

principles showed the maximum interlaminar stresses to occur within one layer thickness of

the free edge. This was reported to be consistent with unreferenced experimental results.

This solution showed the interlaminar shear stress to be nonzero at the free edge. This

result is qualitatively consistent with elasticity solutions which indicate a singularity at

this point, but violates the traction-free boundary conditions. An important indication of

the solution is that the interlaminar stresses depend very little on the Poisson's ratio of the

adhesive layer. Finally, Weitsmann stated that his method was preferable to finite-element

methods, especially for a single embedded layer of adhesive.

While Timoshenko was primarily interested in the operating temperature and deflec-

tion of bimetal thermostats, Suhir (32) was concerned about the possibility of thermostats
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debonding due to the high interlaminar stresses near the free edges. He therefore sought

to develop an engineering theory capable of predicting these stresses, while satisfying the

necessary end boundary conditions. He observed that the reason Timoshenko's solution

could not satisfy these conditions was that the stresses were not calculated from a differen-

tial equation, and end boundary conditions could not be used to affect the solution. Suhir

reasoned that, if the shear stress must go from zero on the top (or bottom) of a bimetal

thermostat to some value (the interlaminar value) at the interface, fibers of material near

the interface must be strained more or less (depending on the sign of the shear stress)

than they would be due to the resultant of the shear stress distribution applied at the

midsection of the layer. Outer fibers of a layer should be strained less or more than they

would be due to the average load. By studying the Ribi~re solution for a finite strip loaded

with an antisymmetric shear load on one face such that the axial displacement is zero at

the center of the strip, he was able to devise a correction term to Timoshenko's equation

for interface strain compatibility. Since this term attempts to account for the variation

of shear stress from zero to the interlaminar value, we see that it imparts a measure of

two- dimensionality to Timoshenko's one-dimensional solution. The most significant effect

of Suhir's extension is that it permits the curvature and strain matching conditions to

produce a second order ordinary differential equation for the interlaminar shear force. The

traction-free boundary conditions at the ends of the strip may then be enforced. The in-

terlaminar shear stress is then found by differentiating the interlaminar shear force, and

interlaminar normal (peeling) stress is related to shear stress via an equilibrium analysis.

Suhir found that the maximum stresses were concentrated near the strip ends. Suhir's

solution for uniform temperatures in each strip will be used as the basis for a solution for

the problem of interest in the present work. The reader is referred to Chapter III for the

mathematical details of this procedure.

Suhir (33) also developed a similar solution in which both the interlaminar shear

force and the interlaminar shear stress are forced to approach zero at the ends of the strip.

The key assumption in this solution is that the transverse normal stress can be written

in terms of an effective through-the-thickness spring constant. This approach leads to

coupled differential equations for the interlaminar normal and shear stresses. After some
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interesting algebraic manipulation, Suhir reduces both equations to the same homogeneous

sixth order ordinary differential equation. His equations are homogeneous because of the

assumed uniform temperature distributions. The solutions for interlaminar normal and

shear stress for the homogeneous problem differ solely due to different boundary conditions

on the two stresses, since there are no particular solutions. For nonhomogeneous problems,

solutions differ due to both different boundary conditions and different particular solutions.

Morton and Webber (34) used Kassapoglou and Lagace's method (24) to calculate

free-edge stresses due to mechanical and thermal loads. They then used a quadratic inter-

laminar stress criterion to make failure predictions, which were found to agree reasonably

well with experimental results. The authors did find that the stacking sequence of laminae

was very influential in determining whether or not failure would occur.

Kuo (35) obtained a solution for a semi-infinite bimetallic thermostat with the free

edge specified to be traction-free. He solved the problem by superposing the solutions to

the following problems:

* The infinite bimetallic thermostat, solved using Timoshenko's theory;

" Bonded dissimilar quarter-spaces loaded on the free edge, solved using Bogy's elas-

ticity solution (12);

" The infinite bimetallic strip loaded on the longitudinal surfaces, solved using Airy

stress functions.

He also solved the problem using finite elements and found his analytical solution to be in

close agreement with the finite element solution. At first glance, the problem Kuo solved

appears to be very nearly the same problem for which a solution is sought in the current

work. However, the particular solutions required by his technique (or any stress function

technique) cannot be found in closed form except for certain temperature distributions.

The most common restriction found in the literature is that the temperature be uniform.

A few solutions have been found for harmonic temperature distributions. In spite of

these limitations, Kuo's results suggest that the elementary beam theory solution due to

Suhir (32) is accurate except in a boundary layer region near the free edge. Kuo's results

indicate the boundary layer thickness to be less than or equal to three times the thickness
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of the thinner strip, although he did not clearly state whether this suggested boundary

layer thickness was applicable to all bimaterial beams, or only to the specific beam for

which he obtained numerical results.

2.4 Solutions for Nonuniform Temperature Change

Ochoa and Marcano (36) extended elementary beam theory to include the effects of

transverse normal strain and transverse shear strain. They used the resulting solutions to

study the stresses in a layered beam subjected to various temperature distributions. The

following forms of temperature distribution were considered:

" Uniform

" Linear in the longitudinal direction with no transverse variation

" Sinusoidal in the longitudinal direction with no transverse variation

" Simultaneously quadratic in both directions

The stresses calculated using classical beam theory agreed well with those predicted using

the extended theory for the first two types of temperature distributions. However, signif-

icant differences were observed for the other two temperature distributions. No mention

was specifically made of interlaminar stresses near the free edge of the beam. Also, none

of the temperatures considered were of the type that decay along the length of the beam.

In fact, they even increased or varied periodically with a constant peak amplitude.

Williams (37) analyzed the effects of the adhesive layer in solar cells by looking at

a three-layer beam using a variational approach with displacement components that vary

linearly through the thickness of the adhesive layer. This solution is limited to temperatures

that vary in the thickness direction only. No variation in the longitudinal direction were

allowed.

Tsai and Morton (38) employed finite element methods to show that the stress state

near free edges is three-dimensional and they proposed that the only possibility of obtaining

accurate free edge results was through the use of three-dimensional finite element analyses.

None of the problems considered were of beam-type structures. That is, the ratio of
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thickness to length was of order unity whereas this ratio is necessarily very small in the

problems being addressed in the current research effort.

Yin (39) studied the effects of free-edge inclination in bimaterial beams, finding that

tapering the free edge almost always led to lower interlaminar normal stresses and some-

times to lower interlaminar shear stresses as well. His variational method was developed

assuming a through-the-thickness temperature distribution, but the specific example ad-

dressed was for a uniform temperature distribution. In any case, the temperature was

assumed not to vary in the coordinate direction along the length of the beam. It is noted

that through-the-thickness variations in temperature are simple to address using the ex-

tension of Suhir's method which will be presented in later chapters. This is because the

governing differential equations do not include that coordinate direction. Therefore, par-

ticular solutions to inhomogeneous terms including only the thickness direction coordinate

are simply those due to the appropriate constants.

More recently, Yang and Munz (40) used the Mellin transform in conjunction with

stress functions to determine the regular (i. e. nonsingular) stress term in bonded dissimilar

materials under thermal loading. The temperature distribution considered was that of a

semicircle of constant temperature with the remainder of the materials at zero temperature.

The technique requires existence and finiteness of the Mellin transform of the temperature

distribution.

Kwon, Salinas and Neibert (41) used newly developed finite elements providing for

both axial and lateral displacement continuity to analyze the stresses in trilayered systems

subjected to various temperature distributions. Nonuniform distributions were considered,

but while the temperature in the different layers was assumed to differ, the temperature

within each individual layer was specified to remain constant.

2.5 Summary

An extensive review of the technical literature revealed that much work has been done

to determine the state of stress in bonded dissimilar materials subjected to temperature

changes. The majority of the work is restricted to uniform temperature changes. A few
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solutions exist for through-the-thickness temperature variations. Very few solutions were

found to exist for layered beams with temperature variations in the longitudinal direction.

However, none of the solutions address the type of nonuniform temperature distribution

in a layered beam heated on one end. It was shown in Chapter I that the thermoelastic

response of a layered cylinder can sometimes be predicted by studying the simpler problem

of a very long layered beam under the same thermal loads. One of the uniform temperature

solutions (32) reviewed above can be extended to address this problem. We now present

that solution and the necessary extensions in detail.
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Ill. Thermal Stresses in a Bimaterial Beam with Nonuniform Temperature

3.1 Problem Description

Consider the semi-infinite bimaterial beam, illustrated in Figure 3.1, composed of two

isotropic, homogeneous and linearly elastic materials. They are assumed to be perfectly

bonded along the interface and the beam is assumed to behave according to standard

Bernoulli-Euler beam theory. The ends of the beam are specified to be traction-free and

its width is given to be unity.

Y

h1 h iE l , v , a , T 1 ,

0

-h2 E2, V2, C12, T2

Figure 3.1 Illustration of the Bimaterial Semi-Infinite Beam

Due to the different temperature distributions and coefficients of thermal expansion

in the two strips, interlaminar shear and normal stresses will occur along the interface of

the two materials. Should these stresses exceed the strength of the interlaminar bond,

failure will occur along the interface, initiating the process of delamination. Thermal

expansion will also cause axial stresses, consisting of both extension and bending terms,

to develop within the individual layers. If these stresses exceed the constituent material

strengths, one or both of the layers will fail in either tension or compression. We desire

a simple engineering solution to this problem for nonuniform temperature distributions. 1

Of particular interest are the stresses in the beam when either the temperature or the flux

'All temperatures are relative to the temperature at which the beam is stress-free, which is taken to be
zero for convenience.
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is specified at the exposed end (x = 0) of the beam. Note that, since the beam is of unit

thickness, all forces and moments will be per unit thickness.

3.2 Suhir's Solution

Following the work by Suhir (32), we seek an elementary strength of materials type

of solution as opposed to an exact elasticity solution. Suhir's solution is now presented in

detail, with three exceptions. First, unless otherwise stated, the current analysis is for a

beam of unit width, whereas Suhir's analysis is for a plate of unit width (i. e. a strip). The

beam formulation of Suhir's strip solution is obtained by replacing the ratio, E/(1 - V2),

with E. Conversely, Suhir's strip formulation of the present beam solution is obtained by

replacing the Young's modulus, E, with E/(1 - V2 ). The second departure from Suhir's

solution is that the current analysis is for a semi-infinite beam, whereas Suhir's analysis

is for a strip of finite length. Finally, the current analysis is for an arbitrary temperature

distribution, whereas Suhir's analysis is for a uniform temperature distribution.

Taking a section cut of the beam in Figure 3.1 at x leads to the free body diagram

shown in Figure 3.2.
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Figure 3.2 Section Cut of the Bimaterial Beam
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Figure 3.3 Interlaminar Forces in the Bimaterial Beam

Moment equilibrium of this section requires that

M4I(X) + M 2(X) -- Q(x) (3.1)
2

where h = h, + h 2. The radii of curvature of the two strips must be equal and are related

to the bending moments by the standard formulae:

M1 (x) - (3.2)p(x)

.2(X )  - (3.3)p(x)

where Ej and Ii are the Young's modulus and moment of inertia, respectively, of the ith

layer. By substituting equations 3.2 and 3.3 into equation 3.1, the radius of curvature is

found to be
1 h (E E1)(3.4)

p(x) =2 ElI1 + E2- Q(x)3

A system of interlaminar distributed forces must be present to hold the strips together,

as shown in Figure 3.3. Note that, while the figure suggests these forces to be uniformly

distributed, no assumption at all has been made regarding their distribution.
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The section must be in force and moment equilibrium. Force equilibrium implies

Q W) = q( ) d (3.5)

V()= P0 -fo P( )d< (3.6)

The traction-free boundary condition at x = oc requires that the cross-sectional shear

force, V(x), be zero there. As research into the problem of thermal stresses in bonded

dissimilar materials indicates a singularity in interlaminar normal stress at the corner,

a pair of concentrated loads, P0 , acting at the origin of each strip, is assumed. Since

V(00) - 0,

P0 = p( ) d (3.7)

In order to prevent dislocations from occuring along the interface, the strain must

be compatible. The interface strains of the two beams are given as follows:

El = lQ + Elq + E1B + CIT (3.8)

C2 =E2Q + C2q + E2B + C2T (3.9)

where EQ is the neutral axis strain due to the average force, Q(x), Eq is a correction term

due to the nonuniformity in the x direction of the distributed lateral load, EB is the strain

due to bending and ET is the neutral axis thermal strain. From simple beam theory we

have

ElQ = -Q(x)/(hl) , 2Q Q(x)/(hE)

CB = hl/(2p(x)) , C2B -h 2/(2p(x)) (3.10)

FlT = a1 Tl(x) , E2 = 2T 2(x)

where a is the coefficient of linear thermal expansion and T represents the change in

temperature of the Ith layer. The temperature change is measured with respect to an

unstrained equilibrium temperature, which is taken to be zero for convenience.
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The correction term, q, requires a bit of clarification. Consider a strip of unit width

with a self-equilibrating shear load applied along its bottom edge, as shown in Figure 3.4.

The x direction displacement at y 0 is given by the Ribi6re solution2 for a long and

y

x

s -- . -- ---- -- ------- 
-- ----- -- -

z=-L q(x) x =L

Figure 3.4 Strip Loaded in Shear Along One Face

narrow strip (32):

l+ = O.[{3 - v - (1 + v)zhcoth mhi coth mh + (1 + v)w, h] sin rVmxUo- 2E
1n~,3,5,....

(3.11)

where

mir
2L 

(3.12)

S 2JL q(x)sinw,, xdx (3.13)

2The Ribi~re solution is an exact solution to the one-dimensional Navier equation obtained using a
Fourier sine series expansion.
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According to Gradshteyn and Ryzhik(42:page 23)

cothirz =_1 + r2z Z1 (3.14)7rZ w1 _ z 2  ±1 n 2

n=1

For sufficiently small values of z this series reduces to

1 rz
coth 7rz - + - (3.15)

irz 3

Therefore, if h/L < 1, the strain at y = 0 is given by

_ duo ,,+ 1 0- E Oturnh + 21- v) CosRMz (3.16)
CR=dx 2E __ 9' *1mm7  h 3! (3.16)Eo d 2----- m 1,3,5 ....

where the R subscript denotes the Ribihre solution. Consider now a section cut of the strip

as shown in Figure 3.5. We seek a value of K such that the strain at y = 0 due to the shear

y

~I -h
q(Q(

Figure 3.5 Section Cut of the Strip

load may be written in the form

COA - V2 Q(x) + inq'(x) (3.17)
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where the A subscript denotes an approximate solution and

Q(x) q( ) d (3.18)
-L

q'(x) dq(x)
dx

Kq'(x) Cq(X)

From equation 3.13 we see that

oo

q(x) > ,,mm sin Imx (3.19)
m=1,3,5,...

Substituting equations 3.19 and 3.18 into equation 3.17, we obtain

EOA= h- + KU?9 Cos mX (3.20)
M=1 ,3,5,....

In order for equations 3.16 and 3.20 to be equal for all values of rm and 79m, we must have

2h(1 + v) (3.21)

3E

The analysis thus far follows that of Suhir (32). Equation 3.21 gives Suhir's interfacial

shear compliance coefficient for bonded strips in plane stress, a configuration which more

closely resembles plates than beams. Since the current analysis is for beams, n must be

adjusted by replacing E with E(1 - V2 ). Performing the substitution results in

2h
K = 2(3.22)

3E(1 - v)

Substituting equations 3.10 into equations 3.8 and 3.9, we obtain

C1 = -Q(X) + Klq'(x) + aTl(x) + hi (3.23)
h1E1 2p(x)

Q(X) _ X + aT - h2  (3.24)O~), 2q'(x) + T()2p(x)
h 2 E 2  hE
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where ai is the coefficient of linear thermal expansion of the ith layer and K 1, K 2 are shear

compliance coefficients given by

2h1

K1 - 2h, (3.25)3E(1 - /21)

2h2
K 2  -- (3.26)

3E 2 (1 - V2 )

with vi being Poisson's ratio. Equating equations 3.23 and 3.24, we obtain

- Q(x) + + q'(x) + - = a2T2(x) - o1 Tl(x) (3.27)
(hi'ij h2 E 2 ) 2q(x ±hi

where K = Kl + K 2. Substituting equation 3.4 into this equation, we obtain

- AQ(x) + Kq'(x) = a 2T2(x) - aOTl(X) (3.28)

where
1 ± 1 / 1 (3.29)

h1 E h2E2  4 ,E + E 212

By differentiating equation 3.5 and substituting the result into equation 3.28, the following

ordinary differential equation in Q(x) results:

Q"(x)- k2Q(x) -2T 2(x) - aT(x) (3.30)
K K

where

k2 A _ 3 (1 - V)(1 -V 2) [(B + 1)(1+ h2)+ 3B(1 + h)2]
K 2h (1+ B B(-V 2 ) +(3.31)

with B = E2h2/(Elhl). Since the ends of the beam are specified to be traction-free,

Q(x) must be zero there.' The necessary boundary conditions are therefore

Q(0) = 0 (3.32)

lim Q(x) = 0 (3.33)
X-CO0

3 Note that this condition will force only the axial stress, aXr, to be zero.
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The solution to equation 3.30 is

Q(x) = Clekx + C2 e- k x + QP(x) (3.34)

where C, and C2 are constants to be determined by applying the boundary conditions,

and Qp(x) is a particular solution to equation 3.30. Applying equations 3.32 and 3.33 to

equation 3.34, we obtain

C = - lim [Q (x)e - kx] (335)

C2 = -Qp(O) + lirn [Qp(x)e- k x  (3.36)

The interlaminar shear stress, q(x), is obtained by differentiating Equation 3.5:

q(x) = Q'(x) = k (Clekx - C 2e- kx) + Q'(x) (3.37)

The interlaminar normal stress, or peeling stress, may be obtained by considering the

moment equilibrium of one of the beams shown in Figure 3.3. Moment equilibrium of

strip 1 requires that

Mi(x) + MP(x) + hQ(x) - POx = 0 (3.38)
2

where Mp(x) is the moment at x due solely to the distributed load, p(s). In order to deter-

mine the relationship between the two, consider the free-body diagram of an incremental

segment of the top strip as shown in Figure 3.6. Equilibrium of forces is guaranteed if

equation 3.6 is satisfied. Equilibrium of moments about point 0 requires that

Amp = VA p 2 (3.39)
2

where p is the average value of p across the segment. Dividing by A and taking the limit

as A --- 0, we obtain
d.MvdM = V(V) 

(3.40)
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.My + My

V V+AV

0

Figure 3.6 Free-Body Diagram of an Incremental Segment.

Substituting equation 3.6 into equation 3.40 and integrating, we obtain

M =(x) -Pox + fo[ p(1') d d (3.41)

where the constant of integration is zero because there are no applied moments. Inserting

this result into equation 3.38 produces the following equation:

A((x) [)-Pox + 0 (3.42)
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Substituting equations 3.2 and 3.4 into equation 3.42 yields

JO' 1 [fz'>i d ] (Q(x)±+ Pox (3.43)

where
hE 1  h I h (3.44)99=2 EjI1 + E212 2

Differentiating equation 3.43 twice, we obtain the normal stress:

p(x) =PQ"(X) = [kP (c 1 kx + C2 e_ kx ) + Q"(X)] (3.45)

The emphasis thus far has been on interlaminar stresses. Another important consid-

eration is that of the axial stresses, which are given by

o(xY)r -Q(x)/hl + MI(x)yl/II, 0 < y h1  (3.46)
( Q(x)/h 2 + A4 2(x)y 2/I 2, 0 > y > -h 2

where

hi (3.47)

Y2 = h2 +±Y (3.48)
2

The axial stresses are found by substituting equations 3.2, 3.3, 3.47 and 3.48 into equa-

tion 3.46. All desired stresses have now been determined and the complete strength of

materials solution to the problem is now given. The interface shearing force is given by

Q(x) = Cekx + C2e - kx + Q,(x) (3.49)

the interface shearing stress is given by

q(x) = k (Ciekx - C2e - kx) + Q'(x) (3.50)
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the interface normal stress is given by

p(x) = fk2 (Clekx + C2e- kx) + Q//(x) (3.51)

and the axial stresses are given by

1 hE1 (h1/2 - y)(.2

or, 1 +hE2 (h2/2 + )} (3.53)+ 2(EIi + E12)

The constants are given by

C = - lim [QP(x)e-kx] (354)
7-00 I 

C2  -Qp(O) + lim [QP(x)e- kx] (3.55)

A concentrated force,

Po = lim C, ekx + 1(C 2 - C) + /Qp()d (3.56)X-0k k 0

is found to act at the corner on the heated end of the beam.

3.3 Extensions to Suhir's Solution

While the development given in the previous section is essentially due to Suhir,

two modifications have been incorporated: all references to x becoming infinite, and the

application to beams as opposed to strips. The key extension making it possible to use this

technique for problems with nonuniform temperature distributions will now be presented.

Suhir's solution is for finite strips with a uniform temperature increase. The concept

of an interfacial shear compliance coefficient is critical because it allows the shear force,

Q(x), to be defined by an ordinary differential equation, allowing the enforcement of zero

normal stress (a.,,) on the ends of the strip. While it does not appear necessary to modify

Suhir's technique for the problem at hand, it is important to defend the use of the same
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interfacial shear compliance coefficient. The interfacial shear compliance coefficient, K, was

shown above to apply to a finite bimaterial strip with a temperature distribution symmetric

about the midlength of the strip. The problem of interest in the current study concerns a

semi-infinite beam with a decaying temperature distribution. It is therefore appropriate to

consider whether K applies in this case. If both TI(x) and T2(x) decay to zero as x -- 0,

there is some value of x, say xoo, for which all stresses are negligible for x > x". Consider

now the beam of length (2 xQ,) shown in Figure 3.7. Suhir's value of K is applicable to this

beam because it is of finite length and the temperature distribution is symmetric about

x = 0. There exists a midsection of this beam, indicated by hash marks in the figure, where

the temperature is very small and all stresses are negligible. The length of the relatively

stress-free region may be made as long as desired by choosing x, to be sufficiently large.

Cutting the long, symmetrically heated beam at x = 0 results in two end-heated long

beams. Consider now a semi-infinite beam with the same temperature distribution as one

of the finite beams produced by taking the hypothetical cut we have just described. If

the temperature in the semi-infinite beam decays to zero sufficiently before x = x., the

stresses in this beam from x = 0 to x = x,, should be indistiguishable from those in the

finite beam, for which Suhir's value of K is applicable. We conclude, therefore, that Suhir's

value of K is applicable to the semi-infinite layered beam with a decaying temperature

distribution.

AY

E1, P1, a,, T1, hi 1

Q -- Q
E2 , P2, a2,2 T, h2

zo X_

Figure 3.7 A Very Long Beam Heated Equally on Both Ends
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3.4 Summary

An engineering solution to the problem of thermal stresses in semi-infinite (or very

long) layered beams with nonuniform temperature distributions has been proposed. The

solution is based on the technique developed by Suhir (32) for a finite bimetallic thermostat

with a uniform temperature increase, but required extensions in order to address the

problem of interest. It was shown that the concept of interfacial compliance proposed by

Suhir for a bimaterial strip subjected to a uniform change in temperature could be applied

to a semi-infinite layered beam subjected to an arbitrary change in temperature. The only

restriction placed on the temperature distribution is that it must decay to zero at infinity.

The expanded solution will now be used to determine the thermal stresses in a generic

layered beam with various nonuniform temperature distributions.
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IV. Thermal Stresses in End-Heated Bimaterial Beams

Without specifying a particular temperature distribution, an elementary bimetallic

thermostat solution was extended in Chapter III to apply to problems in very long layered

beams with arbitrary temperature distributions. The bimetallic thermostat solution was

published for strips of finite length with a uniform temperature distribution. The interfacial

compliance coefficient, n, used in the baseline solution, was known to apply only to finite

strips loaded symmetrically on one face (see Figure 3.4). The applicability of the same

interfacial compliance coefficient was extended for semi-infinte layered strips and beams,

provided the temperature decays to zero at infinity. The generic solution to the problem

was found to be

Q(x) = Clekx + C2e
- kx +QP(x) (4.1)

q(x) = Q(x) (4.2)

p(x) = 1Q"(x) (4.3)

_ + hE,(h,/2+- y)

{ 1 hE2 (h2/ 2 + y) (4.5)a,2= x)U + 2(E,-[, + E2I )

Po = lim o ekx + 1(C 2 - C 1) + Qp() d< (4.6)X-Ok k j 0

C, = - lim [Qp(x)e- k x] (4.7)

C2  - -Qp(O) + lim [Qp(x)e - k x ] (4.8)

where k is given by equation 3.31 and Qp(x) is a particular solution to

QP(x) - k 2 Qp(x) -T 2 (X) - -lT 1 (x) (4.9)

In order for this solution to be valid, the only restriction on Qp(x) is that

- limn[-Qp(O)e-kx + Q(x)e - 2kx] = 0 (4.10)
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Equation 4.10 shows that a closed form solution to the problem exists for any function

Qp(x) that is bounded at x = 0 and grows exponentially at a rate less than e2kx. This

implies that the solution is applicable to a layered beam where the temperature increases

with x (see the right hand side of equation 4.9). However, the constant, k 2 , has in its

denominator the interfacial compliance coefficient, K, which was shown in Chapter III

to be applicable to a semi-infinite beam with nonuniform temperature only when the

temperature decays to zero at infinity. Also, equation 4.6 shows that the concentrated

corner force, P0 , becomes infinite unless Qp(x) decays to zero at infinity. For these reasons

the above solution is deemed to be suitable only for problems in which the temperature

decays to zero at infinity.

Before turning to the problem of interest, i. e. stresses due do the temperature in an

end-heated semi-infinite layered beam (the insulated rod solution), let us first consider a

less complicated decaying temperature distribution. In order to assess the feasibility of our

solution technique, it is not necessary for the temperature distribution to be the solution

to any heat transfer problem. The only requirement levied on the temperature thus far is

that it decays to zero at infinity. One of the simplest types of temperature distributions

meeting this requirement is an exponentially decaying distribution. It offers the additional

benefit that particular solutions to ordinary differential equations with exponential forcing

functions are easily obtained. Therefore, let us first consider the problem where both layers

of a bimaterial beam are subjected to exponentially decaying temperature distributions.

4.1 A Semi-Infinite Beam with Constant End Temperature

Let T1 (x) = Tole - '1x and T2 (x) = To2e-12X, where 7m and 112 are strictly positive

and 7h 4 02. The general solution for this problem is found to be

9(x) = -1/(1 - 6) [e- kx - e- 61kx] + A/(1 - 6) [e- k x - e -6 2kx] (4.11)

4(X) -1/(1 _ 62) i elkx - -kx
] + A/(1 - 62) V 6 2kx -ekx] (4.12)

j(x) = -1/(1- 62) [e- kx - 6  
l- 6kx] + A 2/(1- kx) [ek - 6e 6 2kx] (4.13)

6-., h= - 1+ Etj13) + 3'(1 + -6h(1 + h) -+(x )  (4.14)
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{1+ 3th 2 (1 ± A)+ 6E1 2(1 + h)-} Q(x) (4.15)
-12 -(1+ )+ h+(1 +6 ) (4.16)

(1 + 61)(1 + 62)

where
(x) k 2 Q(x)/AI 4(x) = kq(x)/A,

P(x) p(x)/(pAi) &x h2k 2 (1 + Eh3 )al/A,

ax2= h2k2(1 + A3 )x 2/Al Po k fo fl(s) d

and

A1 =aTo-/K A 2  oa2To2/n

1 i/k 62 7 72/k

E2/E = h2l/h

A A 2/A 1  K =2h,/(3E(1 - Vi)) + 2h 2/(3E 2(1 - V2))

In deriving equations 4.14 and 4.15, the moments of inertia were taken to be those of

rectangular cross-sections of unit width. Note that A = 0 corresponds to the case when

strip 1 is heated while strip 2 remains at zero temperature. When this is the case, the

maximum values of Q,4 and P are found in closed form to be

b bi AI/- 61) /(1+ 61) Ldkx=lIn61 /(b - 1), if 61 4
Q max ---- 1/(2e)) @ kx = 1, if6 1 =1 (4.17)

{ 1/(1 +61) Ca x = 0, if 651 1 (.8

qmax/2 x = 0, if 6 = 1

x -1, @ X = 0 (4.19)

Equations 4.11, 4.12 and 4.13 are plotted in Figures 4.1 through 4.3 for various values of

the parameters, A, b, and 62. Equations 4.14 and 4.15 are plotted in Figure 4.4 for various

values of t and h.
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1.

0 .5 ... ... " "

&,IQ 0

-0.5

-1

-1.5
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y

(a) Material with Ii 1/3

15
=.1

10 = .5-_

2.

-4-

-10 -

-151'
-h2 -h2/2 0 hi /2 h,

Y

(b) Material with ]z=1

Figure 4.4 Nondimensional axial stress, equations 4.14 and 4.15, normalized to the re-

sultant shearing force. Plotted through the thickness for various values of
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Figure 4.1 shows that, when one strip is heated and the other remains at constant

temperature,1 the resultant force due to interlaminar shear stress decreases as the temper-

ature decay rate decreases. This is an indication of the fact that force is proportional to

the total energy deposited in the strip. If the front surface temperature remains constant,

the energy deposited in the strip decreases as the temperature decay rate in the strip in-

creases. It may be shown from equation 4.17 that the interlaminar resultant force vanishes

as the temperature decay rate goes to infinity. A decay rate of infinity corresponds to a

constant temperature on the boundary2 and zero temperature elsewhere. The interesting

thing about this solution is that, while resultant force and interlaminar shear stress both

approach zero, the interlaminar normal stress on the boundary approaches a definite limit

as the decay rate goes to infinity. In fact, the nondimensional value of the limit is -1. With

such a temperature distribution, the problem is essentially that of two rods, only one of

which is heated. If the heated rod is allowed to freely expand and then is forced to assume

its original position, a compressive nondimensional stress of magnitude -1 results. These

results are encouraging and consistent with Timoshenko's solution. Figure 4.1 also shows

that the slope of the stresses is steeper at higher temperature decay rates, a phenomenon

which is certainly to be expected since stress is known to be proportional to the thermal

gradient. A surprising result is that the interlaminar normal stress at the boundary is

independent of temperature decay rate, as shown in Figure 4.1(c) and by Equation 4.19.

When both strips are heated, generalizing the results becomes more complicated, as

illustrated in Figures 4.2 through 4.3. With all other parameters held constant, it appears

from Figure 4.2 that a significant effect of increasing 62, the temperature decay rate in

strip 2, is to increase the peak values of the interlaminar shearing force and both interlam-

inar stresses. Also, for the shearing force and peeling stress, the location of the peak values

appears to approach the surface as 62 increases. Similar results would be obtained if 62 was

held constant and 61 was varied. In either case, these effects are due to the fact that, as the

temperature decay rate increases, the length over which the temperature must decrease to

'When only one of the strips is heated, A = 0, and the results are nondimensionalized such that the
independent coordinate is the nondimensional distance, kx, and the only parameter is the temperature
decay rate of the heated strip.

2 Boundary refers to the free edge at x - 0, while interface refers to the plane, y = 0.
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zero becomes shorter, producing higher gradients in this region. The higher gradients, in

turn, cause higher stresses. Figure 4.2 portrays an interesting phenomenon-namely, that

the the peeling stress is zero at the corner point. This is apparently true for all values of

62. In fact, if A = 1, we see from equation 4.13 that the corner peeling stress is zero for

all values of both b, and 62. When A 1 the product of front surface temperature and

the thermal expansion coefficient is the same for the two materials. There is therefore no

gradient in the interlaminar shear stress at that point, and this leads to a zero value of

corner peeling stress. The peeling stress does, however, achieve its maximum value very

near the free surface.

Figure 4.3 reflects an interesting feature when A changes from one to ten. Specifically,

the shearing force and both interlaminar stresses experience a sign change in the region

nearest the free surface. As shown in Figure 4.3(c), such a sign change may not occur

throughout the beam, since the relative magnitudes of b, and 62 determine the sign if

x 4 0. However, very close to the free edge, a sign change occurs and the physical reason

for it is that the curvature of a bimaterial beam with o1T01 < a 2 T0 2 must be opposite that

of the same beam with a1 T01 > a 2 TO2 . Setting x = 0 in equation 4.12, we find the corner

shearing stress changes signs at the following value of A.

AO = I1+b2 (.0
1 + 62

A0 1 + 61 (4.20)

Now, A 0 = 1 if and only if the temperature decay rates of both materials are identical.

Equation 4.13 shows that the corner peeling stress changes sign for A 1 for all values of

61 and 62. This is significant since it implies that the corner peeling stress is compressive for

A < 1 and tensile for A > 1, for the particular parameters used to generate Figure 4.3(c).

Sufficiently large tensile peeling stresses could cause delamination to begin at the corner.

The concentrated corner force, P0 , is given by equation 4.16 and is seen to depend

on A and the two temperature decay rates, 5 and b2. Like the corner shear stress, it too

experiences a sign change at A = A0 . As a matter of interest, the magnitude of PO is an

indication of the strength of the apparent singularity at the corner.
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Figure 4.5 Flux Heated Bimaterial Semi-Infinite Beam

The magnitude of the peak values also increases significantly for the particular solu-

tions depicted in Figure 4.3. The amount by which the magnitude of peak values changes

is determined by the magnitude of A. The plots are for a significant change in A and they

show a significant change in stresses.

The results of the simple example problem are encouraging. A closed form solution

was easily obtained for a layered beam with a nonuniform, decaying temperature distribu-

tion. While this success lends credence to the solution technique, the simple exponentially

decaying temperature distribution is only qualitatively similar to the temperature in a

semi-infinite medium subjected to uniform heat flux on the surface. We now attempt to

solve the problem when the temperatures are more representative of what they would be

in such a scenario.

4.2 A Semi-Infinite Beam with Constant End Flux

Consider a semi-infinite bimaterial beam, initially at zero temperature everywhere,

which is subjected at time zero to the thermal boundary conditions depicted in Figure 4.5.

The hash marks in the figure indicate insulated boundaries. Note that the interface is

assumed to be an insulating layer, which causes T1 and T 2 to be functions of x and t only,

where t is time. The temperature distribution in this beam is given by the well-known
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insulated rod solution:

T(x,t) = Qlb {1 e_- 4( - erf )} (4.21)kC1 iV/7-

T 2(x,t) - Q2bb 1 e- e- [ i( - erf )} (4.22)
k 1 '

2  - (

where
x x Dx = = b, = 2 =/,-i, '
b b V rD I

erfx - 2/ e-  2 d77

and kci and KDi are the thermal conductivity and thermal diffusivity, respectively, of the

i t layer. Note that b is the thermal diffusion length of layer 1 and that b is the ratio of the

layer thermal diffusion lengths. Substituting equations 4.21 and 4.22 into equation 3.30,

we obtain

Q"(x) - k 2Q(x) = bbkA 2 {--e- i(l - erf. )}

bkA 1 .-- e - (1 - erf4)} (4.23)

where A1 = alQ1/(nkck) and A 2 = a 2 Q2 /(Kkc 2k). After applying the method of

variation of parameters to this equation and enforcing the boundary conditions, the general

solution to the problem is found to be:

,) 12qx {2 [1- erf(: + 0)]- Ab2 q2 [1- erf(i + b6)] } +

1!_ 20fi 2 [erf 0 C0 - A erfb~bbck 620 e' 2 [1 - erf(-i - 0&)] +
4 Ae [ 1- erf(r - bo)] - i4 - A)

0 { [e 2- Ae - [(1 - erfi) - Ab2(1 - erfU)j } (4.24)

" 24 {e € 2 [1- erf(2 + 05)] - Ae212 - erf( ± b)]} -

I!_ 24 J. 2 [erfo C02 - A erf boeb201 e 02 [1- erf(i - 0)] +
4 Ae22 [1 - erf(7 - bo)] - 40/v,- (1 - Ab)

4-11



1 [1- erf - A(1- erf.)] (4.25)
2

/I)e2o C
0

2 [1 - erf(i + )]- Aeb 22 [1-erf(. + b +)]

1 { 2 [erfoC02 - Aerf beb2]-e [1- erf( - 0)] +

(1 - erf(- - 40/,'r (1 - Ab) (

+- ) ± {1- '2erfco - A(l - eb22erfc b)} (4.27)

where

Q( ) - k 2Q(x)/(2A1 )

= kq(x)(2A1 )

/(.i5: = p(x)/(2A, p) (4.28)

P0 = k 00( ) d

erfcx = 1-erfx

= bk/2 = kVlKDt

Equations 4.24, 4.25 and 4.26 are plotted in Figures 4.6 through 4.8 for various values of

the parameters, A, b and 0. Also, since the maximum values of 4 and P3 occur at =0,

they are of special interest and are found from the above equations to be

q0 = 1l{e 2erfc 0 - Aeb 2
02erfc - (- A)} + b) (4.29)

O = -  -(4.30)

where 4o = 4(0) and Po P(0). The nondimensional parameter, 0, is directly proportional

to the square root of time, as shown in Equation 4.28. We see from equations 4.29 and

4.30 that the corner stresses are initially zero and become infinite as time goes to infinity.

The solution (Equations 4.24-4.26) shows the stresses everywhere-not just at the corner,

3 See (32) for a discussion of the maximum stresses.
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to vanish at time zero and become infinite as time goes to infinity. This observation is not

true at x = oo where all temperatures and stresses are required to be zero.

The ratio of the axial stresses, &1 and &2, to 9 is independent of the particular

form of temperature distribution. Therefore, the time-dependent solution currently under

consideration yields ratios identical to those shown previously in Figure 4.4.
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The results for the temporal temperature distributions show trends similar to those

discussed in Section 4.1. For example, Figure 4.6(a) shows that the peak resultant inter-

laminar shearing force, Qmax, increases as nondimensional time, 0, increases. The value

of &i at which this maximum occurs is the value of & where 4 = 0. Let this value be denoted

by XM and let XM be the dimensional distance represented by &m. Figure 4.6(b) shows

that &M decreases as 0 increases. However, & is related to distance by the equation:

kx 20& (4.31)

Therefore, for the plots shown in Figure 4.6(b), kxM increases as ¢ increases, implying that

Q max occurs farther from the edge with increasing time. Similar trends in the interlaminar

stresses are also apparent from the figure. These trends are to be expected because the

temperature is proportional to the square root of time. Figure 4.8 indicates that the

shearing force and both interlaminar stresses experience a sign change in the region nearest

the free surface when A changes from one to ten. Interestingly, A0 , the value of A at which

the transition occurs, is time (0) dependent for the corner shearing stress but independent

of time for the corner peeling stress. Setting 4(0) = 0 in equation 4.25, we obtain

A0 (20/V)e2 erfc 0 - 1 (4.32)
(2 b / v/--) e b22erfc b

This equation shows that A0 = 1 for all time if and only if both materials have the same

thermal diffusivity (i. e. b = 1). Equation 4.30 shows that the corner interlaminar normal

stress experiences the sign change at A0 = 1/b for all values of time. This is significant

since it implies that the corner peeling stress is compressive for A < A 0 and tensile for

A > A 0. Sufficiently large tensile peeling stresses could cause delamination to begin at the

corner.

Although the temperature distribution addressed in Section 4.1 was not obtained

from a heat transfer problem, it still represents a fundamental class of steady-state problems

in which temperature falls from a constant value on one end of a long beam to zero on

the other end. The solution in Section 4.2 represents a class of time-dependent problems
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in which the heat flux (or dT/dx) is held constant on one end of a long beam while the

temperature is kept at zero on the other end. Let us refer to these solutions as the fixed

T and fixed T' solutions, respectively. The primary difference between these solutions is

that the total energy transported into the fixed T system is constant whereas the energy

transported into the fixed T' system increases linearly with time. In fact, it becomes

infinite as time goes to infinity. Due to the principle of conservation of energy, the strain

energy (and therefore, the stresses and strains) of the fixed T' solution exceed those of the

fixed T solution at some point in time, and ultimately become infinite.

There are some similarities in the stress distributions resulting from the different

temperature profiles. In the following comparisons it is helpful to recall that

Ti(X) = Toie - 51kx (4.33)

T2 (x) = T02e- 52kx (4.34)

for the fixed T problem and that kx of the fixed T problem is related to i of the fixed

T' problem by equation 4.31. Comparing Figures 4.1(a) and 4.6(a), we see that Q (and

therefore a,) has relatively large magnitude farther away from the edge when b, decreases,

and that the same trend exists in the time-dependent solution as time (or 05) increases. In a

time-dependent fixed T problem, the temperature at a particular time can be approximated

by an exponentially-decaying function. As time increases the decay rate in the approximate

temperature decreases. Comparing Figures 4.1(b) and 4.1(c) with Figures 4.6(b) and

4.6(c), we see that the interlaminar stresses display the same similarity as 9. Figure 4.2

shows the effect of varying 62 while holding all other parameters constant. Figure 4.7 shows

the effect of varying b (KD2) while holding all other parameters constant. A comparison

of these figures shows that all fixed T stresses increase as 62 increases while the fixed T'

stresses increase as b decreases. When 62 is relatively large the temperature in layer 2

falls from its fixed boundary value to zero over a relatively short distance. This is the

same type of behavior exemplified by a material with relatively low thermal diffusivity (b).

The thermal stresses are higher for problems where 62 is high (or b is low) due to the fact

that the layerwise temperature difference is higher. Figures 4.3 and 4.8 show the effects
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of varying A while holding all other parameters constant. A comparison of these figures

reveals very similar behavior in both the fixed T and fixed T' solutions.

We have considered both fixed T and fixed T' problems for end-heated semi-infinite

beams. However, in problems where heat flux is applied somewhere far from both ends of

a very long beam, a more appropriate model might be an infinite beam with known flux

at the origin, where the origin of coordinates is coincident with the center of the heated

area. Fortunately the generic solution presented for semi-infinite beams is also applicable

to infinite beams.

4.3 An Infinite Beam with Constant Flux at the Origin

Consider a layered beam of infinite length with a line source of constant heat flux

applied along a line passing through the origin of coordinates and perpendicular to the

longitudinal axis of the beam. If the temperature of such a beam is zero at infinity, the

one-dimensional temperature distribution is given by the insulated rod solution and is

symmetric about the origin:

T(x,t) =Qb { 1e__ (I-erf Ii) (4.35)

T2(x,t) Q 2bb 1 (12 - f } (4.36)
k 2  7 e -Ix(1-erx

Due to the symmetry of the problem, the interlaminar shearing stress must be zero at the

origin. The interlaminar shearing force, Q(x), is governed by the same ordinary differential

equation as in the semi-infinite problem:

Q"(x) - k 2Q(x) = -T 2(x, t) - aT(x, t) (4.37)
K K

where

Q(x) = q() d (4.38)
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The general solution is the same as in the semi-infinite case, but the boundary conditions

are different. Whereas before the boundary conditions were

Q(O) = lim Q(x)= 0 (4.39)
X-00

the symmetry condition requires the following conditions for the infinite medium:

Q'(O) = limQ (x) = 0 (4.40)

The solution is found to be

1(i, ) le20&4 {C02 erfc(& + ) - i eb2q5 2 erfc( :  + 0) +

1 e-20& C02 erfc( -) Ae b2
02 erfc(b - ) + 2(A - 1) +

S{---1 [ - - - [2i(1 - erf&) - A (1 - erf )] } (4.41)

q(x, :i) = le2¢'X {e ¢ 2 erfc( : + € ) - Ab¢erfc(x ± b € )} -

1e-2rM {2(A - 1) + e ¢2 erfc(4¢ - ) A b2 / erfc(b5 :i)}

1 [erfc - Aerfc ] (4.42)

( r.) le2 e 2erfc(& + ) - A} erfc( )+

4

I e20&. {2(A - 1) + e2 erfc(Q _ O ) - Aeb 202 erfc(69  _ 0 )} (4.43)
4e 1

There should be no concentrated corner force, P0 , in this problem because of symmetry

and the fact that all stresses are zero at x = ±o. This is easily confirmed by integrating

equation 4.43 from -so to oo. The absence of the corner force is actually indicative of the

fact that there is no corner in the infinite problem.

Equations 4.41 through 4.43 are plotted in Figure 4.9 for various values of the nondi-

mensional time, 0, with A = 0. The figures show that all forces and stresses increase with

time and that the resultant force and interlaminar normal stress achieve their maximum

values at the origin. The interlaminar shear stress undergoes a sign change at the origin
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and its maximum slope occurs there as well. The figures imply and the equations confirm

that these quantities become unbounded as time becomes infinite.

The figures indicate that material failure will occur at the origin at some time. This

observation was confirmed experimentally by Camburn et. al. (43), who tested bimaterial

beams made of a thin graphite epoxy layer laminated to a thick aluminum layer. In

a typical experiment, a beam was loaded in uniform compression below the yield point

of the graphite epoxy and the graphite epoxy side of the beam was subjected to laser

irradiation at an intensity level below the ablation threshold. The graphite epoxy layer

failed in compression at the center of the irradiated spot, which coincides with the origin

in the present analysis. Failure stresses were much lower for the laser-heated beams than

for baseline beams tested at room temperature.

It is interesting to compare the infinite and semi-infinite solutions. Figure 4.10 shows

the two solutions for the largest possible layerwise temperature difference (i. e. A = 0.)

and for one specific value of the nondimensional time. The relative behavior of the two

different solutions is independent of time. For example, the nondimensional resultant axial

force, 0. > Q12 near x = 0, where the subscripts denote the solutions for the infinite

and semi-infinite media. This is true for all values of time. Care must be taken when

comparing these solutions, since all forces and stresses are nondimensionalized by a factor

involving the heat flux, Q1, which must be below the material ablation threshold in order

for the infinite model to apply and above the threshold for the semi-infinite model to apply.

In typical problems, the two fluxes are likely to differ by about one order of magnitude.

For example, in graphite epoxy laminates, thermal soak problems (infinite medium) are

characterized by incident flux values in the tens of Watts per square centimeter, while

ablation problems (semi-infinite medium) are characterized by flux values in the hundreds

of Watts per square centimeter. Therefore, the dimensional values corresponding to the

nondimensional values shown in Figure 4.10 differ by about an order of magnitude less

than the nondimensional values shown in the figure.

The axial stresses are higher at the origin for the infinite beam than they are for the

semi-infinite beam. This is due to the fact that the free thermal expansion of material at

the origin of an end-heated semi-infinite beam is resisted by unheated material on only
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one side of the heated end. The free expansion of the material at the origin of an infinite

beam is resisted from unheated material on both sides of the heated area. Interestingly,

Figure 4.10 shows the dimensional interlaminar stresses in the infinite beam to be small

compared to those in the semi-infinite beam. This is because interlaminar stresses normally

arise due to the presence of free edges, of which there are none in the infinite beam.
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Let us consider a means by which the solutions given by equations 4.24-4.27 may

be verified. As shown previously, Suhir's (32) solution is the foundation upon which the

present solution is constructed. Therefore, it would be instructive to compare the two if

possible. Suhir used his solution technique to analyze a molybdenum/aluminum bimetallic

thermostat subjected to a temperature increase of 240'C. (See Table 5.8 for a list of the

material properties Suhir used.) Although Suhir's solution was presented for a bimetal-

lic thermostat with uniform temperature increase, it is applicable to any finite-length

bimetallic thermostat with a temperature variation symmetric about the midlength of the

thermostat. For the purposes of our comparison, it is acceptable to consider a bimetallic

beam with the temperature in one layer maintained at zero. Although this assumption is

not physically probable, it has no bearing on the verification of equations 4.24-4.27, and

it shortens the closed form solutions considerably because the parameter A is zero. It is

noted, however, that this assumption prevents the verification of any terms in the solution

which involve the parameter, A.

Figure 4.11(a) shows the temperature in a semi-infinite molybdenum layer as a func-

tion of nondimensional distance and time. It is evident from the figure that T1 Z 0 for

i greater than about 1.6 . Each of the temperature curves can be fitted very accurately

using cubic polynomials. Equation 4.24 was used to determine the resultant interlaminar

shearing force, Q(x), due to the actual temperature distribution. Suhir's solution was then

used to calculate Q(x) due to the cubic approximations to the temperature distribution.

Figure 4.11(b) shows the resulting force. Only one curve is shown for each time because

the two solutions were indistinguishable.

Yet another verification of the solution may be obtained by comparing the fixed

end temperature solution (equations 4.11-4.16) to the exact transient solution (equations

4.24-4.27) at discrete values of time. This is possible because, at a fixed point in time, the

insulated rod temperature solution (equations 4.21 and 4.22) is approximated reasonably

well by a simple exponentially decaying function. Figure 4.12 shows the results of such a

comparison and indicates excellent agreement between the different solutions.
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Figure 4.11 Temperature and resultant shearing force in a molybdenum/aluminum beam
where the aluminum is kept at zero temperature.
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Figure 4.12 Temperature and resultant interlaminar shearing force in a heated molybde-

num/aluminum beam with the aluminum temperature maintained at zero.
Comparison of the exact transient solution to the fixed-end temperature so-
lution at two different values of time.
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4.4 Summary

A simple strength of materials solution has been modified and shown to develop a

closed form solution for thermal stresses in infinite and semi-infinite bimaterial beams with

nonuniform temperature distributions. The solution technique was applied for an exponen-

tially decaying temperature distribution and found to produce physically explainable and

believable results. It was then applied for the more complicated temperatures found in the

insulated rod exposed to uniform flux on one end and constant temperature at infinity. A

closed form solution to the governing differential equation was obtained using the method

of variation of parameters. Once again the results were both explainable and believable.

All of the solutions presented herein were derived from Bernoulli-Euler beam theory, which

is known to be inaccurate very near the ends of a beam. We now establish the domain of

applicability of the present solution and provide several numerical examples to illustrate

how the solution may be used in a failure analysis.
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V. Applicability of the Solution

Since the present solution is derived from Bernoulli-Euler beam theory, it inherits all

the strengths and weaknesses of the beam theory. In particular, and of utmost importance

to the semi-infinite solution, beam theory is known to be inaccurate in the neighborhood of

discontinuities and free surfaces. The length of this region, often referred to as a St Venant

boundary layer, has been taken to be on the order of the beam thickness for homogeneous

beams and was shown by Kuo(35) to be less than three times the thickness of the thinner

layer for bimaterial beams.

In transient heat transfer problems, the thermal diffusion length, b = 2t, is a

measure of the distance over which conduction heat transfer has occured at time t. Let C
be the nondimensional length given by

h (5.1)

where h is the total beam thickness. If C is a large number, this means that heat has

not diffused very far into the St Venant boundary layer. Consequently, if C is large, it is

unlikely that significant stresses exist outside of the boundary layer. On the other hand, if

( is a small number, heat has diffused into the material beyond the boundary layer and it

is much more likely that significant stresses exist outside of the boundary layer. We now

determine whether our solution predicts stresses of sufficient magnitude to cause material

failure inside the domain of applicability (i. e. outside the St Venant boundary layer).

5.1 Applications

All of the results, equations, and plots presented thus far have been in nondimensional

form. The most obvious benefit of this approach is that it greatly reduces the number of

parametric analyses and plots needed to characterize a problem. One of the most obvious

drawbacks of this approach is that it is sometimes difficult to look at nondimensional results

and have a comfortable understanding of what real-world problems they represent. It is

important to consider a few examples with dimensionalized quantities in order to assess

the potential applicability of the solution to real problems. This is especially true for the

5-1



semi-infinite beam problem since the results are not believed to be accurate within about

one beam thickness of the free edge. For the sake of brevity the following examples assume

T 2 to be zero unless otherwise stated.

EXAMPLE 1: Let us consider first the problem of a good thermal conductor bonded

to a poor thermal conductor of similar stiffness. For example, suppose we have a cop-

per/porcelain beam with the material properties shown in Table 5.1. Figure 5.1 shows the

interlaminar resultant shearing force, the interlaminar shearing stress and the maximum

normal stresses in the two layers. The maximum normal stresses occur at the top and

bottom of the layers. In the current context, the word maximum is meant to imply the

largest values of tensile and compressive stress, sign notwithstanding. In the event all the

normal stresses are of the same sign, the maximum and minimum values are plotted. The

interlaminar normal stress is not presented in the figure because it is identically zero in

the current model when the two layers have the same Young's modulus and thickness.

As shown in Table 5.1, the layer thicknesses are equal and the Young's moduli are very

nearly equal. Consequently, the resulting interlaminar normal stresses are negligible. The

magnitude of the interlaminar shearing stress is relatively small except near x = 0. The

St Venant boundary layer addressed earlier extends one beam thickness into the beam.

Therefore, we are primarily interested in the stress values outside of this boundary layer

(i. e. for x > .508 cm). In this region failure due to interlaminar shear does not seem likely.

Figure 5.1 suggests that the most likely cause of failure for this type of material

configuration would be either tensile or compressive failure of one of the layers due to

Table 5.1 Example 1 Material Properties (Ref. 44-46)

MATERIAL E v h aD 9
MPa cm cm/cm/o C W/(cm 0 C) cm 2/sec W/cm 2

1, Copper 1.22 X 105 .33 .254 17.7 X 10- 6  3.86 1.12 1000

2, Porcelain 1.11 X 10' .33 .254 5.5 X 10-6 .05 .013 0
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excessive normal stresses. In the present context, failure is assumed to occur in a layer if

the stresses in the layer exceed its strength. The strength of the porcelain in this example

is 72 MPa in tension and -550 Mpa in compression. The strength of copper is 225 Mpa

and is assumed to be the same in both tension and compression. Figure 5.2(b) shows that

the first region of this bimaterial beam to experience failure will be the top surface of

the porcelain layer. For this example the top surface of the porcelain coincides with the

bimaterial interface. The failure is in tension and occurs at t P .48 seconds. Figure 5.2(a)

shows that, if it was possible for the porcelain layer to survive, the copper layer would

eventually fail in compression at the bottom surface (i. e. along the bimaterial interface)

at t ; 3.45 seconds.
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Figure 5.1 Resultant interlaminar force and stresses for Example 1. Plotted as a func-
tion of distance for various values of time. This example represents a good
conductor bonded to a poor conductor of similar modulus. See Table 5.1 for
the material properties used to generate the plots.
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Figure 5.2 Peak normal stresses at the edge of the St Venant boundary layer for Exam-
ple 1. Plotted as a function of time. Strength values denoted by X.
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Table 5.2 Example 2 Material Properties (Ref. 44-46)

MA TERIA L E V h a kc DQ
MPa cm cm/cm/° C W/(cm 0 C) cm 2/sec W/cm 2

1, Copper 1.22 X 105 .33 .339 17.7 X 10-6 3.86 1.12 1000

2, Porcelain 1.11 X 105 .33 .169 5.5 X 10- 6 .05 .013 0

EXAMPLE 2: Let us now consider the effect of the ratio of material thicknesses, h,

on the stresses. All material properties, including the total beam thickness, remain the

same as in Example 1. The only changes to Table 5.1 are the individual layer thicknesses.

Changing h from 1 to 1/2 results in the stresses shown in Figure 5.3. All of the stresses

increase with time and, just as in Example 1, the layer axial stresses are much higher than

the interlaminar stresses. The peak interlaminar shearing stress does increase by about a

factor of 2. The interlaminar normal stress appears to be negligible in the region where

x > h. It is interesting to note that the porcelain layer is entirely in tension, whereas the

bottom of it was in compression in Example 1. It may easily be verified that U, 2 (-h 2 ) = 0

by substituting the Table 5.2 properties into equation 3.53. Figure 5.4(b) shows the first

failure to be in tension at the top of the porcelain layer, and will occur at t Z .58 seconds.

Figure 5.4(a) shows that, if it was possible for the porcelain layer to survive, the copper

layer would fail in compression at the bottom surface at t & 2.85 seconds. Comparing

Examples 1 and 2 indicates that the effect of decreasing the ratio of porcelain to copper

thickness, while keeping the total thickness constant, is to extend the life of the porcelain

layer while shortening the life of the copper layer.
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Figure 5.3 Interlaminar stresses and maximum normal stresses for Example 2. Plotted as

a function of distance for various values of time. This example is identical to

Example 1, except that the ratio of thicknesses, h, is now 1/2. See Table 5.2

for a list of the material properties used to generate the plots.
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There are obviously an infinite number of examples one could consider. Having just

investigated the effect of changing only one material parameter, it seems appropriate to

assess the effect of the various properties on the resultant interlaminar shearing force and

the stresses. From equations 4.28 we have

Q Q(X) (2A1)
q() k ) (5.2)

(, =P(x) 2(All )

where A1  alQ1 /(Kkclk). Making the substitution and introducing new notation, we

obtain

Q Q'

q - qfq (5.3)

P PIP

where

2a, Q1
kCl(K k

3)

qf = - 2le, Q, (5.4)

kc1 (Kk 2 )
2a,1Q, W

kc(Kk)

If the material Poisson's ratios are approximately equal, equation 3.31 may be written as

follows:
3 -

k= 3k 2  (5.5)
2h 2

where
k 2 (1- V)(1 + h) 2 [(B 1)(1 + B h2) + 3B( I  h)2]

2  1±+ Rh B + h2  (5.6)
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The interfacial compliance coefficient, n, may also be simplified when the Poisson's ratios

are approximately equal. Assuming equality, we have

2h
S-3E 1(1 ) (5.7)

where
+h )(5.8)

E(l +h)

The load and stress scale factors (equations 5.4) may now be written in the following

manner:

( , ) 2) 2\ 1
QfEl (1- (2 ?j

/kc1 3 kk 3

OlQ1Ej(1v)(2) h 1 (5.9)
kc,qf - -c 1- v)(2) h :

kc, 2l1 + Eh3 1+h kk

With the scale factors written in this form, the effect of several parameters on the stresses

and loads is evident. For example, all three factors are linearly proportional to the mag-

nitude of the coefficient of thermal expansion, the heat flux at x = 0, and the Young's

modulus of layer 1. They are inversely proportional to the thermal conductivity of layer 1.

The interlaminar stresses are directly proportional to the total beam thickness. The layer

normal stresses are proportional to Q/h, and are therefore also proportional to the total

beam thickness. The effects of variations in E and h on the loads and stresses may be

determined by analyzing the following functions:

1

1
qf- - (5.10)

1(I E 1 +)

The nondimensional loads and stresses given by equations 4.24 through 4.26 were previously

shown to increase as the nondimensional time, 0, increases. As defined, 0 is proportional to
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(a) Scale Factor for p(x) (b) Dimensionless Material Parameter, k

Figure 5.5 Scale factor for the interlaminar normal stress and dimensionless material
parameter, k. Plotted as a function of the ratio of thicknesses, h, for various
values of the ratio of Young's moduli, E.

the material parameter, k. Therefore, the effect of variations in t and h must be predicted.

Figures 5.5 and 5.6 show the factors of interest as functions of t and h. Figure 5.6 suggests

that variations in h have little effect on the magnitude of Q and q for 0 < £ < 2. It appears

that these magnitudes increase by no more than about a factor of 2, as h increases by a

factor of 10, for all values of £ considered. Figure 5.6 suggests that the magnitude of p

and k are relatively sensitive to changes in A for 0 < -k < 2. Figure 5.5 shows p1 and k as

functions of A with -k as a parameter.
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Figure 5.6 Scale factors for the dimensionless interlaminar resultant force and interlami-
nar stresses, and the dimensionless material property, k. Plotted as a function
of the ratio of Young's moduli, t, for various values of the ratio of thicknesses,
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EXAMPLE 3: The first two example problems considered a good conductor bonded

to a poor conductor with approximately the same Young's modulus. Let us now consider

the same conductor bonded to a poor conductor of much lower modulus. This might be

the case when metal strips are bonded using certain epoxy adhesives. Table 5.3 lists the

material properties and Figure 5.7 shows the resulting stresses. Comparing Figures 5.1 and

5.7, one sees that the stresses are lower for the "softer" adhesive. Of particular interest

are the interlaminar shearing stress and the normal stress in the adhesive layer. The

interlaminar shearing stress is much lower than for the stiffer adhesive of Example 1 and

the normal stresses in the adhesive layer are nowhere compressive.

Figure 5.7 suggests that the most likely cause of failure in this example would be

excessive normal stresses (l, a2 ) in one of the layers. However, the magnitude of these

stresses is significantly below the material strength values (225 MPa for the copper and

70 MPa for the epoxy) after 10 seconds of heating. For the incident heat flux given in

Table 5.3, the heated end of the copper layer will melt in about 12 seconds. We therefore

conclude that, for this example, the bimaterial beam will become inelastic and succomb to

thermal failure (via melting and/or ablation) before it fails due to thermal stresses.

Table 5.3 Example 3 Material Properties (Ref. 45-48)

MA TERIA L E v h a kC D Q
MPa cm cm/cm/ C W/(cm C) cm 2/sec W/cm 2

1, Copper 1.22 X 105 .33 .254 17.7 X 10-6 3.86 1.12 1000

2, Epoxy 3.59 X 10 3  .33 .254 65 X 10-6 .002 .001 0
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Figure 5.7 Interlaminar stresses and peak normal stresses for Example 3. Plotted as a
function of distance for various values of time. This example represents a
good conductor bonded to a poor conductor with much lower modulus. See
Table 5.3 for the material properties used to generate the plots.
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Comparing the results of Examples 1 and 3, it is evident that the principal reason

for the different failure possibilities is the significant difference in Young's moduli of the

poor conductor (layer 2 in each example). While it is true that the thermal properties

of the two poor conductors are quite different, this does not affect the stresses because

no heat is conducted into the poorly conducting layers in both examples (i. e. q2 = 0).

These results suggest that, for a good conductor with Young's modulus El, there is some

value of t = E 2 /E 1 below which failure due to elastic thermal stresses is not probable.

Figure 5.8 shows the time to failure as a function of t for both a copper/epoxy and an

aluminum/epoxy bimaterial beam. The figure indicates that, as k becomes small, the time

to failure exceeds the time at which the heated end of the metal layer reaches the melting

temperature.

TM 1080'C at t z 12.24 sec TM 660'C at t 6.76 sec
12 1 1 , 10 1 1

Copper - 9 Aluminum
10 Epoxy - 8 Epoxy

8 7
6

t!, sec 6 t1 , sec 5

4
4 3

2 2

1 2 3 4 5 1 2 3 4 5
= E2/E1  = E2/E1

(a) Copper/Epoxy Beam (b) Aluminum/Epoxy Beam

Figure 5.8 Time-to-failure for two metal/epoxy bimaterial beams. Plotted as a function
of the ratio of Young's moduli, t, of the epoxy to the metal.
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EXAMPLE 4: Thus far we have not addressed the effect of thermal properties on the

stresses. In particular, the thermal diffusivity and thermal conductivity are very impor-

tant in the development of thermal-induced stresses. These properties are not completely

independent, but it is nevertheless instructive to vary them independently to assess their

relative roles in the development of stresses. We first consider the thermal diffusivity.

This property does not appear in any of the stress scale factors, but, for the semi-infinite

beam, it is hidden in the nondimensional length variable, i. Table 5.4 shows the material

properties used for this example. Note that material 1 is identified as a hypothetical solid

because it would be difficult to find a single material capable of having such diverse values

of thermal diffusivity as the entries in the table. Figure 5.9 shows the resultant shearing

force and the stresses (at t = 10 seconds) as a function of distance with thermal diffusivity

as a parameter. The figure suggests that all stresses increase as the diffusivity increases.

Furthermore, the extent of a certain stress level into the material increases with increased

diffusivity. These results are due to the fact that a good diffuser will allow for more rapid

thermal transport than a poor diffuser. This will cause a larger volume of material to

undergo a temperature increase. The heated material will then expand, causing higher

stresses to persist further from the edge than if the heated material was a poor diffuser.

Table 5.4 Example 4 Material Properties (Ref. 44-46)

MATERIAL E v h a k c  Q
MPa cm cm/cm/ 0 C W/(cm0 C) cm2 /sec W/cm 2

1, Solid(Hyotic 1.22 X 105 .33 .254 17.7 X 10- 6 3.86 .1,.5,1 1000(Hypothetical)

2, Porcelain 1.11 X 105 .33 .254 5.5 X 10-6 .05 .013
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top surface and the negative stresses are at interface and the negative stresses are at
the interface, the bottom surface.

Figure 5.9 Resultant interlaminar shearing force, interlaminar shearing stress and peak

normal stresses for Example 4. Plotted as function of distance (at t = 10

seconds) for various values of the thermal diffusivity of the heated layer. See
Table 5.4 for a list of material values used to generate the plots.
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EXAMPLE 5: It appears evident from the previous examples that thermal diffu-

sivity and thermal conductivity are critical players in determining both the magnitude of

stresses and whether or not significant stresses occur outside the St Venant boundary layer

region. The results of Example 4 showed that increasing the thermal diffusivity caused

both the peak stresses and their extent into the material to increase. It was not clear

that thermal diffusivity affected one of these factors more than the other. The thermal

conductivity in Example 4 was quite high. Therefore, let us now consider the effects of

varying the thermal conductivity for a poor diffuser. Figure 5.10 shows the stresses for

the material properties listed in Table 5.5. The plots reveal that stresses are very high

when both thermal conductivity and thermal diffusivity are low. Also, it appears from

the figure that the extent of significant stresses into the material increases very little with

significant variations in conductivity. This observation, coupled with those made earlier

for Example 4, suggests that thermal diffusivity is the driving factor in determining how

far beyond the boundary layer significant stresses may be expected.

Table 5.5 Example 5 Material Properties (Ref. 44)

MATERIAL E v h a kcD Q
MPa cm cm/cm/° C W/(cmoC) cm 2/sec W/cm 2

1, Solid(Hyotic 1.22 X 105 .33 .254 17.7 X 10- 6 .05,.1,.5 .1 100(Hypothetical)

2, Porcelain 1.11 X 10' .33 .254 5.5 X 10-6 .05 .013 0
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Stresses. The positive stresses are at the Stresses. The positive stresses are at the
top surface and the negative stresses are at interface and the negative stresses are at
the interface, the bottom surface.

Figure 5.10 Resultant interlaminar shearing force, interlaminar shearing stress, and peak

normal stresses for Example 5. Plotted as a function of distance (at t = 5
seconds) for various values of the thermal conductivity of the heated layer.
In this example, the heated layer has a low diffusivity. See Table 5.5 for a
list of material values used to generate the plots.
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EXAMPLE 6: Let us now consider the effect of thermal conductivity on the stresses

in a good diffuser. Table 5.6 lists the properties for our example and Figure 5.11 shows

the resulting stresses. Comparing Figures 5.10 and 5.11, we see that the higher thermal

diffusivity indeed results in extending the region of significant stresses into the material.

Increasing the thermal conductivity seems to be the primary contributor to increases in

the stress magnitude.

Table 5.6 Example 6 Material Properties (Ref. 44)

MATERIAL E v h Q kC  , D

MPa cm cm/cm/ C W/(cm0 C) cm2 /sec W/cm2

1, Solid(Hyotic 1.22 X 10' .33 .254 17.7 X 10- 6  .05,.1,.5 1.12 100(Hypothetical)

2, Porcelain 1.11 X 105 .33 .254 5.5 X 10- 6  .05 .013 0
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the interface, the lower surface.

Figure 5.11 Resultant interlaminar shearing force, interlaminar shearing stress, and peak

normal stresses for Example 6. Plotted as a function of distance (at t = 5
seconds) for various values of the thermal conductivity of the heated layer.

In this example, the heated layer has a high diffusivity. See Table 5.6 for a
list of material values used to generate the plots.
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EXAMPLE 7: In the last few examples we have examined the effect of varying either

the thermal conductivity or thermal diffusivity while holding the other constant. In reality

this is probably not possible because the two properties are related by the definition

KD1 kc (5.11)
Pi C~1

where cpl is the specific heat at constant pressure. While it is not expected that KD1 will

scale linearly with kc, as one considers different materials, the two properties are certainly

proportional if the variation in the product of density and specific heat is not great. For

the sake of making our examples a bit more realistic, let us consider an example in which

the ratio of thermal conductivity to thermal diffusivity remains constant. Table 5.7 lists

the material properties and Figure 5.12 shows the resulting stresses.

Table 5.7 Example 7 Material Properties (Ref. 44)

MATERIAL E v h ND Q
MPa cm cm/cm/0 C W/(cm°C) cm 2 /sec W/cm 2

1, Solid(Hyotic 1.22 X 105 .33 .254 17.7 X 10- 6  .05,.1,.5 .1,.2,1 100(Hypothetical)

2, Porcelain 1.11 X 10' .33 .254 5.5 X 10- 6  .05 .013 0
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Figure 5.12 Resultant interlaminar shearing force, interlaminar shearing stress, and peak
normal stresses for Example 7. Plotted as a function of distance (at t = 5

seconds) for various values of the thermal conductivity of the heated layer.
In this example, the ratio of thermal diffusivity to thermal conductivity is
held constant. See Table 5.6 for a list of material values used to generate the

plots.
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EXAMPLE 8: As a final example, let us consider the stresses in a bimetallic beam

where both metals are reasonably good conductors and T2 5 0. We consider the molyb-

denum/aluminum beam addressed by Suhir (32), except that his analysis was for a finite

beam with uniform temperature increase. Table 5.8 lists the material properties and Fig-

ure 5.13 shows the peak normal stresses. The interlaminar stresses are not plotted because

they are large in the boundary layer region only and are negligible compared to the normal

stresses outside this region. The material strength values are taken in this example to be

78 MPa (45:page 715) and 689 MPa (49), respectively, and it is assumed that they are the

same in tension and compression. Figure 5.13(d) shows that the first failure in this beam

will be in compression at the top of the aluminum layer (i. e. along the interface), and will

occur at t 2.67 seconds. At the time of failure, the end temperature of the molybde-

num layer is about 520'C, which is well below the melting temperature of molybdenum

(2610'C). The end temperature and the melting temperatures of the aluminum layer are

415'C and 660'C, respectively. Thus, while it is likely both metals are still elastic at the

predicted failure time, very little additional heating would have to be applied to cause

the temperature of the aluminum layer to exceed the value at which it ceases to behave

elastically.

Table 5.8 Example 8 Material Properties (Ref. 32)

MA TERIA L E v h a kc D

MPa cm cmn/cm/° C W/(cm°C) cm 2/sec W/cm 2

1, Molybdenum 3.25 X 105 .33 .254 4.9 X 10-6 1.23 .479 500

2, Aluminum 7.038 X 104 .33 .254 23.6 X 10-6 2.04 .842 500
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Figure 5.13 Peak normal stresses for Example 8. In subfigures (a) and (c) the positive
stresses are at the interface and the negative stresses are at the top surface.
In subfigures (b) and (d) the negative stresses are at the interface and the
positive stresses are at the bottom surface.
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5.2 Summary

The preceding examples show that the simple strength of materials solution predicts

significant axial thermal stresses outside of the St Venant boundary layer for bimaterial

beams where at least one of the layers is a relatively good thermal conductor. If both

layers are poor conductors, very high stresses result, but they are near the edge in the

region where the solution is not applicable. For all combinations of materials considered

the interlaminar stresses were relatively small in the domain of applicability of the solution.

An attractive feature of the solution technique presented in Chapter III is that it

can readily be applied to problems where temperature varies in both the lengthwise and

thickness directions. The problems considered thus far have been for bimaterial beams

with a thermally insulated interface. In reality, thermal conduction in a bimaterial beam

heated on the end will be two-dimensional. It is reasonable to assume that the effect

of two-dimensional heat conduction would be to lower the point-by-point temperature

difference in a bimaterial beam, when compared to the same beam with one-dimensional

heat conduction. In our model, the resultant interlaminar shearing force is driven by the

difference, aiTl(x, t)- a2 T2 (x, t), as shown in equation 3.30. The interlaminar stresses are

related to the derivatives of this difference. Therefore, the thermal stresses in a bimaterial

beam with an insulated interface will certainly differ from those in the same beam with a

conducting interface.

Another attractive feature of the solution technique is that it is readily applied to

layered beams with more than two layers. If one were to model a nonhomogeneous material

of finite thickness as a discrete number of homogeneous layers, it is reasonable to assume

that the thickness of these layers would affect the magnitude of the thermal stresses. We

now attempt to quantify what effects two-dimensional heat transfer and layer thicknesses

have on our solution.
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VI. Two-Dimensional Heat Transfer and Multiple-Layered Beams

As noted in the previous chapter, the strength of materials solutions derived and

presented thus far are applicable to bimaterial beams with one-dimensional heat transfer in

the lengthwise direction. We now attempt to determine the effects of two-dimensional heat

transfer and multiple material layers on the magnitude of the thermal stresses calculated

using our solution.

6.1 Two-Dimensional Heat Transfer

In an attempt to quantify the effects of two-dimensional heat transfer on thermal

stresses, we now study the effects of thermal transport in the y-direction on stresses in the

finite bimaterial beam shown in Figure 6.1. The beam is relatively thin, with insulated

top and bottom faces. The temperature distribution in the beam is obtained by solving

the following system of equations:

a 2T, a
2T1  1 0T1X

- - '-  + - -y gD0 (6.1)
aX2 ay2 KD1 tt
, 2T 2  92T2  1 aT 2- + - (6.2)
Ox2 ± -KD2 at

The initial and boundary conditions for the problem are

Ti(x,y,0) = T 2(x,y, 0) 0

Q1

KD1, kci,T, (x, y, t) T1  0

x

KD2, kc 2 , T2 (X, y, T 2 =0

Q2x=L

Figure 6.1 Flux Heated Bimaterial Long Beam
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9T (,y

Ox (O,yt) - , 0 > y -h2OxkC 2

Tl(L,y,t) 0, 0 < y < hi

T 2(L,y,1) 0 0, 0 > y > -h 2

ad(x, hi,t) 0

ay

a2(X, -h2, t) = 0

T1(x,0,t) = T 2(x,0,I)

kc '1 yl(X,0, t) =  kC2-9 2 (X, 0,t)

The last two boundary conditions will be referred to as matching conditions. Continuity

of both temperature and flux implies perfect thermal contact along the interface between

the two materials.

6zi§ik (50) provides an exact solution to this problem using integral transforms. The

author has derived this solution using a slightly different approach. However, the resulting

temperature distributions are given in terms of double Fourier series. For each eigenvalue in

the x-direction, there are an infinite number of eigenvalues in the y-direction, a substantial

number of which are small in magnitude. What this means is that large numbers of terms

must be retained for accuracy, leading to numerical convergence difficulties. Numerous

attempts were made to formulate approximate solutions based on characteristics observed

from the exact solution. These attempts were successful only for steady state solutions

(i. e. long time) and were dismissed. A different approach is therefore sought to provide

meaningful insight into the role of transverse conduction in alleviating thermal stresses in

bonded materials.

It is possible to formulate a one-dimensional solution which preserves the flavor of

transverse conduction in the two-dimensional problem. This is accomplished by approx-

imating the conduction heat transfer along the interface by some equivalent convection

heat transfer. In other words, it is assumed that temperature is a function of x only, but

with one medium losing heat to the other. The amount of heat lost to the other medium is
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also assumed to be a function of x only. Thus, an apparent effect of transverse conduction

is preserved. The convection heat transfer coefficient is approximated by the reciprocal of

the thermal resistance of the layered medium (46:page 25). The approximate problem to

be solved is described by the following equations:

2 -W2(T_ _- T2) 1  (6.3)
092 0i

a2T2 W 1 T2 (.2t + (T 1 - T2 ) V - (6.4)

T(i,0) = 0 (6.5)

T 2 (x,0) = 0 (6.6)

T(1, i) = 0 (6.7)

T2 (1,i) = 0 (6.8)

T,(0,j) = -1 (6.9)

0T2 (0,j) = (6.10)
0i kc

where H, the effective convection heat transfer coefficient, is given by

H k l2h ( 1 l+c,( (6.11)

and

= x/L t Dlt/L 2

T = kc 1T/(Q1 L) = kclT 2 /(Q 1L)

O2= HL 2/(h~kcl) b2  KD2/flDl

We resort to the finite Fourier cosine transform to solve this problem. Let

Tj(m r) -= ' 1i ,(i, i) COSy,, a (6.12)

1i p, i) = E 5 Ti( ,Y,,) cos 7. (6.13)
m=1
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where 7m = (2n - 1)7-/2. Using this transformation, equations 6.3 and 6.4 reduce to

dT 1 = V/2L + L2 T2 - (L 2 + 7Y2)T1 (6.14)
di

dT 2  b 2 Q b2w2 _ b2w 2

b2_v_+ -=--T - (- + bT,)T 2  (6.15)d c hkc hk

Equations 6.14 and 6.15 are easily decoupled and solved subject to the initial conditions

(equations 6.5 and 6.6). An equally valid approach is to write equations 6.14 and 6.15 as a

first order system and solve the system using the matrix method for ordinary differential

equations. Decoupling of the equations produces two second order equations which require

initial values of both the transformed temperatures and their first derivatives. The deriva-

tives are not specified in the original problem but are easily derived from equations 6.14

and 6.15. Going through this process, we find the temperatures to be given by

l(, t) = 2Z [Clmi+±C 2 e)2m1 + - cos YMx (6.16)

T2 ( =) - _[DimePhlm± D 2meO27t + dm ( 2 ± 72A -1i cos 'Tmi (6.17)
m~Cm

m=l1

where 01,. and 02m are roots of the characteristic equation

tn + bmOm m 0

and

bm = L
2 1+ +/2(l+b 2 )hk ) i

cm =- + m ( + ) -

dm = b _77,- + + AY
-kc hk ±4Tm

Cim = dm 02m + CM
Cm('lrm - )2m)

C2m dmbm + cm
Cm(V)im - 02m)

Dim = Cam[m + W 2 + _,]
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D 2mn=C.[2 "

The convergence of these series solutions was verified by comparing the limit as t -- 0c

with the analytical steady-state solution to equations 6.3 and 6.4, which is given by

_ 1) [1  { sn (wR( - 1))
T, (&, cc) =-- - 1) 

(k R12- wR cosh wR
- -1) (6.18)

T2 (~oo (s- 1) 1~R2 { sinh (wR(& - 1))
(kc hkC2 WR cosh WR

P(- 1) (6.19)

where R = 1 + 1/(hkc).

If the interface is insulated (i. e. w 0), the resulting temperature distribution is

one-dimensional and is given by

2=co - eZ 2 cos -Y .. (6.20)

m=

Note that equations 6.20 and 6.21 are the solutions to equations 6.3 and 6.4, respectively,

with w = 0. Although the series
cos 7m 

(6.22)

is not twice differentiable term-by-term, it may be shown that

00 11

2 cos -(1- 7rn) (6.23)
m=1 m 2

Therefore, the insulated interface temperature distribution may also be written in the

following manner:

2^

t 1(,) --(-1)-2 Y 2 Cos'YM& (6.24)
m=1 s  5
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_ e- b 2 'Y t

(i) P, r 12 Cos 7mx (6.25)
kc cm=1 lyfm

The time-independent portions of these functions are the steady-state solutions to the

insulated interface problem. Convergence to the steady-state solution is easily verified

by taking the limit of equations 6.24 and 6.25 as t -+ o. Figure 6.2 shows the layer-

wise temperature difference in the layers of a bimaterial beam with a convection interface

condition and an insulated interface condition.
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(b) Insulated Interface: w2 = 0.

Figure 6.2 Temperature difference, T1 - T2 , between layers of a finite bimaterial beam,
with and without transverse conduction heat transfer along the interface.
Plotted as a function of & = x/L, with nondimensional time, i, as a parameter.
Note that t o corresponds to the steady-state solution.
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As stated earlier, it is reasonable to assume that the point-by-point temperature

difference (AT(x)) in a bimaterial beam with transverse conduction along the interface

is lower than AT(x) of the same beam with an insulated interface. This assumption can

be proven for the steady-state problem. Let AT = 0 and AT-w 4 0 represent

the layerwise temperature difference (T 1 - T2 ) for the insulated and conducting interface

problems, respectively. Subtracting the steady-state components of equations 6.20 and

6.21, we obtain

ATW 0 =-2 1~ ) 00 cos 7n: (6.26)

Subtracting equation 6.19 from equation 6.18 and expanding the resulting function into a

Fourier cosine series, we obtain

ATw 40 = -2 -1) 7 Cos 7m (6.27)

E 2 +2 (1+/Ik)

Comparing equations 6.26 and 6.27, we see that

AT = 0() < ATo 5 O() (6.28)

for all nonzero values of w.

Figure 6.2 suggests that similar behavior occurs in the transient problem. For ex-

ample, the maximum temperature in both beams is at x = 0 and t = oo. Figure 6.2(a)

shows that AT(0, oo) zz -0.16 for a bimaterial beam with transverse conduction along the

interface. Figure 6.2(b) shows that AT(0, oo) = -9.0 for the same beam with an insulated

interface. (These plots are both on the same scale.) We see therefore that two-dimensional

heat transfer lowers the maximum layerwise temperature difference by about ninety-eight

percent! Figure 6.2(a) also suggests that thermal equilibrium is achieved near the heated

end of the beam with interface conduction. In other words, AT 0 over most of the

length of this beam.

As we have just shown, the layer-wise temperature distribution in a heated bimaterial

beam with interface conduction (modeled as equivalent convection) is easily obtained for a

beam of finite length using the Fourier cosine transformation. Attempts to obtain a closed
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form solution for the temperature distribution in a semi-infinite bimaterial beam with the

same interface conditions were unsuccessful. However, if it were somehow possible to model

the semi-infinite bimaterial beam as an equivalent homogeneous beam, the temperature

distribution is the well-known insulated rod solution.

The example problem suggested that T1 z T over most of the length of a finite

bimaterial beam with conduction along the interface. If this is true for finite beams, it

should also hold for semi-infinite beams. Therefore, it is proposed that the temperature

distribution in the semi-infinite beam be determined by analyzing an equivalent homoge-

neous beam where T1 = T2. Note that the equivalent homogeneous model is used only to

obtain a closed form expression for the temperature distribution. When calculating the

stresses due to this temperature distribution, the beam is analyzed as a bimaterial beam.

This approximation allows us to obtain a closed form solution for the thermal stresses, from

which we are able to estimate the error in the stress distribution when two-dimensional

heat conduction is ignored. The thermally equivalent problem is formulated by taking the

flux, conductivity and product of density and specific heat to be weighted averages, with

layer thickness being the weight factor:

+h

pC ~ pi~ 1 +i] h

kC = kC1 -

I + iv

The equivalent thermal diffusivity is then given by

KD = kc/(pCp) = KD1 ( 1+ kD- ) (6.29)
± hD h/kC

Using these equivalent thermal properties, the average temperature distribution in a finite

beam may be written as

1 + Qh 1 - e-K7771t
T 2 2 cos m (6.30)

-9n=l "
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where T kc 1T/(Q1 L) and K = -TD/IKD1 . Once the average temperature distribution is

obtained in this manner, the stresses may then be calculated using the solution technique

given in Chapter III.

The temperature distribution in a semi-infinite layered beam with an insulated in-

terface is given by equations 4.21 and 4.22. Using the weighted average concept discussed

above, we may write the average temperature distribution as

(x~t = O I + hQ Qlb f1 _ }
Q1 + h kc- - erfc x (6.31)

where x = x/(b/K). The interlaminar shearing force is calculated by substituting equa-

tion 6.31 into equation 3.30. After making the substitution and going through the algebra,

we arrive at the following result:

Qcond {[1k] K3/2±I } h ins (6.32)

In this equation, the subscripts on 9 denote the solutions with interface conduction (mod-

eled as equivalent convection) and with no interface conduction. The forces and stresses for

the insulated interface condition are given by equations 4.24-4.27. In order to calculate the

corresponding quantities when interface conduction is considered, we need only multiply

the insulated interface quantities by the scale factor given in equation 6.32. The magnitude

of this scale factor is determined by the values of the parameters, K, kc, 0, and A.

Suppose we were using the current approach to assess the magnitude of thermal-

induced stresses in graphite/epoxy laminates subjected to 10.6p laser radiation. The ratio

of boundary heat fluxes is determined by the ratio of the different coefficients of absorption

of the constituent materials. In this case the constituent materials are graphite fibers and

epoxy, both of which are very good absorbers at 10.61t. Therefore, for most problems

involving graphite/epoxy or other commonly used structural composites, very little error

is introduced by prescribing 0 to be unity. In fact, this assumption could be made with

confidence for most nonmetallic composites provided the incident laser beam is infrared.

If the volume fraction of the graphite/epoxy laminate is .75, it can be shown that h 1/3.
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With these values of Q and h, equation 6.32 becomes

Qcond -- 20 - A c 3 + c ins (6.33)

Graphite fibers are much better conductors than epoxy, implying that kc is very small for

graphite/epoxy laminates. In the event that kc is negligible, we have

Qcond -j- Qins (6.34)

Through this analysis we have seen that the insulated interface solutions presented in Chap-

ter IV overestimate the actual solutions (incorporating the effects of transverse conduction)

by something on the order of twenty percent for one specified set of material properties.
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6.2 Multiple-Layered Beams

We now consider a semi-infinite composite beam of finite thickness consisting of N

discrete layers of material, each of which is made up by a layer of fiber material embedded

between two layers of matrix material. The total thickness of the beam is h = h, + h2 ,

where h, and h2 are the total fiber and matrix thicknesses. We propose to study what

effect N has on the thermal stresses. Note that as N is varied, the total beam thickness

remains constant. Therefore, N is inversely proportional to the thickness of the fiber and

matrix sublayers.

jh

Ihf
Ih,

Figure 6.3 A unidirectional composite beam with an alternating stack of matrix and fiber

material. There is a total of N layers in the stack, where N is an odd integer.
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For the present analysis, it suffices to consider a simple temperature distribution in

which the temperature in the fiber layers decays exponentially while the temperature in

the matrix layers remains constant. The reference temperature will be taken to be zero

for convenience. Given a value for N, the various thicknesses in the model are related by

2h 2hm-=

2h,
h -I-N-i

The governing differential equation for the interlaminar shear force is given by equa-

tion 3.30:

QN(X) - kIQN(X) -- T- [Tl(x, t) - a 2T 2(x, t)] (6.35)

where QN is the resultant interlaminar shearing force in any fiber layer when there are N

total layers of material, and

N = N -1AN (6.36)

As :N-lI1 iN h-
AN = + ) (6.37)

KN = N4 ( h2  h ) (6.38)--3 (N + I)E2 + 2(N - 1)Ei

If Q, denotes the resultant interlaminar shearing force in any matrix layer, then

N-1

Om N + 1
9 N (6.39)

As before, the force and resulting interlaminar stresses are time dependent only in the

sense that the temperatures are allowed to be time dependent. To apply this solution to a

problem, we look at the problem where the temperature in the fibers decays exponentially

while the matrix temperature remains at zero. Let T = Tole-'x and T2 = 0. The

interlaminar shear force, interlaminar stresses and the concentrated corner forces are given

by

N+ 1 K3 r 1 ] F-b 5
N N - [62 - (kN/k3)2 e-x - e-(kNlk

3 )x (6.40)
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ki

qN =~ [2 -(/k)2] [-j-' + k3  (kN 1k3) (6.41)

KN +1 _ (N lk k13 kNPN N 1 - (kN/k)2 l 6e-b1 + (kL) e-(kN/k3>ji (6.42)

PN, = N+1 KN61 + kN/k 3] (6.43)

where

O lT 01
Am =

K 3

QN = 3QN
A1
k3qN - -qN

A11
PN h2 AIPN

= k 3 x

and the various quantities are nondimensionalized with respect to the 3-layer solution.

The K and k ratios in the above equations may be written in terms of N, B - !h and it.

The result is

K3 = (B + h,2 )(N 2 - 1)

KN 2B(N + 1) + 4(N - 1)h 2 (

kN I (N + 1)(N - 1)2 (B + h2 )

k3  2 B(N + 1) + 2(N-1)h2  (6.45)

It may easily be shown that

K30 (Nk) (6.46)

Therefore, QN vanishes everywhere as N becomes infinite, as suggested by Figure 6.4. The

interlaminar stresses, on the other hand, go to zero everywhere except at the corner as

N becomes infinite. Taking the limit of the corner shear stress as N goes to infinity, we

obtain

lim 4N(O) = -/B 2B+

64B + 2 2  (6.47)
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which is easily seen to be about -1 for most values of B and h. The greatest value it can

reach is -1/V/2 when B = 0. Taking the limit of the corner peeling stress as N goes to

infinity, we obtain
1

lim iN(0)=-- (6.48)N-co 2

Equations 6.40 through 6.43 are plotted in Figures 6.4 through 6.7.
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Figure 6.4 Nondimensional resultant axial force, equation 6.40, with T, T01 e
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-2 0. Plotted for various values of N, the number of layers in the model,
with 61 being the temperature decay rate in the fiber layers.

6-16



0.2

0...........

-0.2

-0.4

-0.6

N= 3-

-0.8 N= 5
N = 7 ......
N 25

-1 , I

0 5 10 15 20

(a) 5 .1

0.2 1

0 . ...".

-0.2

, -0.4

-0.6

-0.8 N= 5-
N = 7 ......
N = 25

-1

0 2 4 6 8 10
x

(b) 61 .5
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Figure 6.6 Nondimensional interlaminar normal stress, equation 6.42, with

T, = Tole - bl k3X, T 2 = 0. Plotted for various values of N, the number of
layers in the model, with b, being the temperature decay rate in the fiber
layers.
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Figure 6.7 Nondimensional concentrated corner force, equation 6.7, with

T1 = Tolc- 1 k3x, T2 = 0. Plotted as a function of 61, the temperature decay
rate in the fiber layers, for various values of N, the number of layers in the
model.

As shown both in the above figures and in the analysis of the equations, the inter-

laminar shearing force and the interlaminar stresses approach zero as the number of layers

increases. This is true everywhere for the shearing force and it is true for the stresses

everywhere but at the corner point. The predicted interlaminar stresses should diminish

as N increases, as illustrated by the following simple argument. As N increases, the to-

tal amount of fiber and matrix material doesn't change, but the number of interlaminar

interfaces increases. The total amount of thermal energy in the system remains constant

throughout the analysis. If N = 3 we have one layer of fiber material embedded between

two matrix layers. Suppose this fiber layer were allowed to freely expand. The amount of

force required to compress it back to its original length is given by

F = hfEaT (6.49)
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where hf is the total fiber thickness. If the material is then divided up into N layers, there

are (N - 1) interfaces between the two constituents. The total force given by equation 6.49

must be resisted by interlaminar shearing stresses distributed over all of the interfaces.

The interlaminar shearing stress, T, is then given by

7 = (6.50)
(N- 1)L

which vanishes as N goes to infinity. Typically, the diameter of fibers in a fiber-reinforced

composite laminate is very small compared to the laminate thickness. If, in our multiple

layer model, the thickness of the fiber sublayers was chosen to be about one fiber diameter,

this would equate to a large value for N. Correspondingly, our analysis shows that the

thermal stresses would be negligible except very near the edge where the solution is not

applicable.

6.3 Summary

As suspected, the inclusion of two-dimensional heat transfer and multiple layers into

our model has a definite impact on the magnitude of thermal stresses calculated using the

model. In particular, it was shown that the thermal stresses in one specific bimaterial

beam with an insulated interface are on the order of twenty percent higher that those in

the same beam with two-dimensional conduction across the interface. It was shown that

the number of discrete layers used to model a nonhomogeneous beam of finite thickness

had a much more pronounced impact on the magnitude of the thermal stresses. In fact,

the stresses were shown to approach zero (everywhere except at the end of the beam) as

the number of layers in the model became large. The implications of this finding on the

utility of our solution are discussed in the concluding chapter.
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VII. Concluding Comments

7.1 Review

This work began as a result of the author's research into potential mechanisms respon-

sible for the failure of composite pressure vessels subjected to high energy laser irradiation.

Various researchers analyzed the overall problem, but none of them addressed the role of

thermal transport in the fiber direction and the ensuing thermal stresses. The present

author worked with many of the same researchers on materials characterization programs,

in which it was observed that heat conducted away from the irradiated area was substan-

tial. So much, in fact, that material heats of ablation (Q*) calculated from experimental

data were falsely inflated when heat loss from the irradiated area by conduction into the

surrounding material was not accounted for. For example, it was not uncommon for the ex-

perimental data to predict Q* values of 100 (kJ/gm) for carbon based composites, whereas

the actual value was known to be about 30 (kJ/gm). Since the coupon experiments showed

heat loss via conduction away from the heated area to be significant, and the large-scale

failure analyses ignored this phenomenon, it was decided to pursue a solution capable of

assisting researchers in determining the effects of thermal stresses in such problems. The

problem of thermal stresses in end-heated layered beams was proposed as a suitable model

for providing meaningful insight into the outcome of the more complicated problem.

A literature review was then conducted to assess the current state-of-the-art knowl-

edge of thermal stresses in layered beams. The results of the review were documented

in Chapter II, and they show that surprisingly little work has been done in the area of

obtaining simple closed-form solutions to layered composite beams subjected to the type

of temperature distribution found in typical laser interaction problems. In particular, no

solutions were found in the literature for the thermal stresses in semi-infinite (or very long)

layered beams with decaying temperature distributions. There was one solution, however,

the one due to Suhir (32), which appeared to be applicable to the current problem provided

certain assumptions could be made. By incorporating the concept of interfacial compliance,

Suhir was able to extend Timoshenko's classical bimetallic thermostat solution to account

for prescribed normal stresses on the ends and for the presence of interlaminar stresses
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near the ends. Suhir's solution was limited, however, to bimetallic strips (or beams) of

finite length subjected to a uniform temperature change.

Suhir's solution technique was presented in Chapter III and was extended to apply

to semi-infinite beams with nonuniform temperature distributions. The only limitations

on the temperature distribution are that it be differentiable and decay to zero at infinity.

It was shown that Suhir's interfacial shear compliance coefficient was applicable to semi-

infinite strips and beams with stress-free end loads if the temperature was of a decaying

nature and vanished at infinity. It is important to note that the semi-infinite beam with a

uniform temperature distribution is not a special case of the solution and cannot be treated

using Suhir's interfacial compliance coefficient. Using the extended technique, it was pos-

sible to write the resultant interlaminar shearing force as the solution to a second order

ordinary differential equation with prescribed boundary conditions. Closed-form solutions

for the thermal stresses could then be obtained for any temperature distribution for which

a particular solution to the governing differential equation was available in closed form.

The solutions presented in Chapter III were all written in terms of a generic particular

solution.

The extended solution technique presented in Chapter III was applied to problems

with specified temperature distributions in Chapter IV. At first a very simple problem with

exponentially decaying, steady state temperatures was solved. The results of this exercise

were very encouraging since a closed form solution to the governing differential equation was

easily obtained. The solution technique was then applied to a layered beam in which the

temperature in each layer was given by the time-dependent insulated rod solution, a much

more complicated function than the simple exponentially decaying function considered

earlier. By using the method of variation of parameters, a closed-form solution was found

for complicated temperature distributions of this type. Finally, the method was applied

to a beam of infinite length with a heat source at the origin. All the results presented

in Chapter IV were nondimensional and were therefore applicable to any combination of

materials meeting the underlying assumptions.

While the nondimensional solutions of Chapter IV covered a multitude of material

combinations and heat loads, they were insufficient for making failure predictions due to the
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presence of St Venant boundary layer effects. Since the solutions were based on Bernoulli-

Euler beam theory which is inaccurate within about one beam thickness of the ends, it was

not clear from the nondimensional results whether or not stresses of sufficient magnitude to

cause failure existed anywhere outside of the boundary layer. Several numerical examples

were then considered to determine the solution's utility in making failure predictions.

From these examples, it was concluded that significant normal (i. e. axial and bend-

ing) stresses occur in layered beams outside the St Venant boundary layer if at least one

of the layers is a good thermal conductor. Thermal diffusivity was shown to be the key

parameter in establishing how far into the beam significant stresses exist at a specific point

in time. Thermal conductivity was shown to contribute more to the magnitude of stresses

than to their extent into the beam. It was also concluded from the example problems

that the solution is not very useful in the analysis of layered beams if all the layers are

poor diffusers. In such a problem, very high stresses develop, but they are limited to

the St Venant boundary layer region of the beam, where the present strength of materi-

als solution technique is not applicable. In all of the example problems, the interlaminar

stresses were found to be insignificant outside the boundary layer region when compared

to the axial stresses. In every example where mechanical failure was deemed likely, it was

predicted to be via tension or compression in one of the constituent layers. A very sim-

ple strength of materials failure criterion was employed. If the axial stress was found to

exceed the strength (in compression or tension) in either of the constituent layers, it was

then concluded that failure occurred in that layer.

It was determined from the example problems that the thermal stresses are of suffi-

cient magnitude to cause failure outside of the St Venant boundary layer in a bimaterial

beam made of a good conductor bonded to a poor conductor of similar stiffness. For the

specific examples considered, it was concluded that the poor conductor would fail long be-

fore the good conductor. However, it was shown that the stresses would be lower (and the

predicted time-to-failure longer) in the poor conductor if its thickness is decreased while

the total beam thickness is held constant. The effects of this thickness variation were just

the opposite in the good conductor. That is, as the thickness of the poor conductor was

decreased, the stresses were found to be higher (and the time-to-failure shorter) in the good
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conductor. It was shown that, if the stiffnesses of the constituent layers differed greatly,

the end temperature of the materials would reach the melting or ablation temperature

before stresses sufficient of causing failure developed outside the boundary layer. In such

cases the failure was referred to as thermal failure as opposed to mechanical failure.

Two simplifying assumptions were addressed in Chapter VI in an attempt to under-

stand the extent of their effect on the thermal stresses: the role of two-dimensional heat

transfer in thin bonded layers, and the effect of the number of discrete layers used to model

a laminate of fixed thickness. It was shown for a specific example that the thermal stresses

in a bimaterial beam with two-dimensional heat transfer along the interface were about

twenty percent lower than the stresses in an identical beam with an insulated interface.

These results were obtained by performing a pseudo two-dimensional analysis in which

transverse conduction was modeled as equivalent convection. It was concluded from this

analysis that the temperature distribution in a long, thin bimaterial beam (or strip) with

the prescribed thermal boundary conditions is accurately approximated by the solution

to another problem in which a single-layered beam with the appropriate average thermal

properties is subjected to the same thermal conditions. This approximation was shown to

be very good everywhere except at the heated end of the beam, and especially good outside

of the St Venant boundary layer. These findings suggest the presence of a sort of thermal

St Venant boundary layer and that its length is shorter than that of the mechanical St

Venant boundary layer.

The stresses were shown in Chapter VI to be inversely proportional to the number

of discrete layers used to model a composite beam of fixed thickness. This finding suggests

that the solution is not suitable for use in micromechanical models of unidirectional fiber-

reinforced composite materials. The reason is that the thickness of fiber sublayers must

approach individual fiber diameters in such a model. Typical fibers are relatively small in

diameter, implying that the discrete layer model of a lamina may contain many layers.

7.2 Validity of the Solution

As noted earlier, very few solutions were found in the literature dealing with thermal

stresses in layered beams subjected to the types of temperature variations considered in
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the present work. The solution is based on the work by Suhir (32), which is in turn based

on Timoshenko's classical bimetallic thermostat solution. The validity of Suhir's solution

outside of the St Venant boundary layer was established by Suhir in (32) and was later

confirmed numerically by Kuo's finite element solution (35). Therefore, one means of

establishing the validity of the present solution is to show agreement with Suhir's solution.

Although Suhir published his solution for uniform temperature distributions, the

key idea in his solution is that of using an interfacial compliance coefficient to provide

a correction factor to the equation for the interfacial strain in a layered beam with a

nonuniform interlaminar shearing stress distribution. The interfacial compliance coefficient

is derived from an exact solution in elasticity, the Ribi~re solution, which is applicable to

a strip of finite length loaded in shear on one face with the shear load being symmetric

about the midlength of the strip. The layered beam subjected to uniform temperature

change is a special case of this problem. The concept, however, is applicable to a beam

with nonuniform temperature change if the temperature distribution is symmetric about

the midlength of the beam.

The present solution was shown in Chapter IV to be in excellent agreement with

Suhir's solution for both cubic and exponential temperature distributions (see Figures 4.11

and 4.12). Also, it is known that tihe temperature distribution in a semi-infinite rod at

early time is the same as that in a sufficiently long rod of finite length at the same value

of time. The solution to the governing differential equation (equation 3.30) is, however,

easier to obtain in the finite problem because the temperature in the finite problem is

available as a Fourier series. This is in contrast to the semi-infinite problem which requires

the evaluation of complicated integrals required by the method of variation of parameters.

The present solution (equations 4.24-4.27) was compared to the Fourier series solution at

several points in time, and was found to be in excellent agreement.

The similarities and differences in the behavior of the solution for fixed end temper-

ature (equations 4.11-4.16) and fixed end flux (equations 4.24-4.27) boundary conditions

in the semi-infinite beam suggest that the solution is valid. For example, a comparison of

Figures 4.1(a) and 4.6(a) reveals that Q (and therefore a) has relatively large magnitude

farther away from the edge when 61 decreases, and that the same trend exists in the time-
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dependent solution as time (or $) increases. Comparing Figures 4.1(b) and 4.1(c) with

Figures 4.6(b) and 4.6(c), we see that the interlaminar stresses display the same similarity

as Q. These observations are meaningful because, although the thermal boundary condi-

tions in the two cases are different, similarities exist in the temperature distributions and

in the amount of thermal energy deposited into the layered beam. There are no applied

mechanical loads, implying that all stresses must be a result of the heating. Therefore,

similar temperature distributions should lead to similar stress distributions, and this is

suggested by comparisons such as the one addressed above.

Another indication of the solution validity is that it satisfies both the governing dif-

ferential equation and the boundary conditions. As shown in Chapter III, the interlaminar

shearing stress, q(x), is the first derivative of the resultant interlaminar shearing force,

Q(x), and the peeling stress is a multiple of the second derivative of Q(x). The plots in-

cluded in Chapter IV confirm these relationships. Figures 4.1-4.3 and 4.6-4.8 show, for

example, that q(x) = 0 at the same location in the beam where Q(x) achieves its absolute

extreme value. Since the layered beams under consideration in the present study are sub-

jected to no mechanical loads, the interlaminar shearing stress must be self-equilibrating

over the length of the beam. The solution exhibits this behavior.

7.3 Potential Solution Applications

Unless otherwise stated in the suggested applications that follow, the present solution

can be used with confidence to calculate the stresses in end-heated layered media outside

of the St Venant boundary layer and is to be used with caution within the boundary layer.

Perhaps the most obvious application of the present solution is in the design and

analysis of bimetallic beams or plates exposed to nonuniform temperature environments.

The solution may be used in such problems to determine the axial and interlaminar stresses.

The potential for failure due to excessive thermal stresses can be addressed using this

solution, and, although deflection was not specifically addressed in the present work, the

tip deflection is easily determined from the stresses calculated using the present solution.

In a transient thermal environment, the solution can be used to predict the time at which

yielding or failure of one or both of the components is expected. The present solution
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could be used as part of an iterative design approach in which the stresses and deflection

are calculated, and modifications are made in the design until acceptable performance

is predicted. The analysis given is directly applicable to a simple structure such as a

thermostat. With the appropriate change in elastic constants, the solution can be used to

perform these analyses in any bimetallic strip, beam or plate.

The present solution is grounded in beam theory. Therefore, it may be used in

any application where beam theory is used and with the same degree of confidence. The

resulting quantities of interest include bending stresses, bending moments, deflection, etc.

The advantage of this solution is that it may be used for layered beam theory analyses in

other than uniform temperature environments. For example, the solution can be used with

confidence to determine the bending stresses and tip deflection of a bimetallic cantilever

beam where the beam is mounted to a very large hot or cold mass and protrudes into

a time-dependent temperature field. In this case, however, the beam would experience

lengthwise heating (or cooling) which is not directly addressed in the present analysis.

Assuming the thermal problem is solved first, the present analysis is then applicable for

the determination of stresses. It is noted that, although beam theory is an approximate

theory, it has been used extensively in engineering design and analysis and yields the exact

solution in many cases (see Rivello (51:page 142)).

The solution is useful in the analysis of end-heated composite laminates with laminae

consisting of fibers which are good conductors embedded in matrix material which is a poor

conductor, provided the layup is not unidirectional. For example, the solution is applicable

to a [0/90/0/90] graphite epoxy laminate because the effective thermal conductivity in the

fiber direction of the 0' layers is dominated by the fiber conductivity (which is high) while

that of the 900 layers is dominated by the matrix conductivity (which is low). The present

solution can be used to calculate the bending and interlaminar stresses in such laminates.

This information could be used to make failure predictions outside of the boundary layer

or it could be used to design an appropriate laminate for a particular thermal application.

The solution is applicable to certain classes of problems where layered composite or

dissimilar materials are heated by a laser or other intense heating source. An example

of this type of problem is the laser-heated graphite-epoxy/aluminum beams studied by
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Camburn, Lippert and Maddux (43). In order to satisfy the assumptions inherent in the

present solution, the heat source must span the entire heated area in one dimension and

must cover a very small area in the other dimension. For example, the diameter of the

laser spot in the experiments documented in (43) was very small relative to the length of

the beams and larger than the width of the beams. Other applications of this nature are

when a composite laminate is heated by a long, thin laser heat source or when layered

dissimilar materials used in hypersonic flight are subjected to intense aerodynamic heating

by line shocks. In these applications, the solution may be used to calculate bending and

interlaminar stresses in the materials at least one laminate thickness away from any exposed

free edges. The solution is not recommended for complex problems such as the laser-heated

composite bottles discussed in Chapter I.

The governing differential equation for the present solution, equation 3.30, can be

used to calculate the length of the St Venant boundary layer in a layered beam with

a prescribed self-equilibrating (but nonzero) normal stress distribution on the end. The

effects of any of the material parameters considered in the present problem on the length of

the St Venant boundary layer could be determined using the present solution. For example,

the solution may be used to determine the effect of layer stiffnesses on the boundary layer

length.

Finally, although it was not proven, there is reason to believe that the present simpli-

fied solution can be used to establish an upper bound on the depth of damage into layered

dissimilar materials due to end heating. Most of the simplifying assumptions inherent

in the present solution tend to cause the stresses to be overestimated. For example, the

present solution assumes that mechanical properties exhibit no temperature dependence.

In actuality, many engineering materials are known to become more compliant (i. e. the

stiffness decreases) as temperature increases. The thermal stresses in a bimaterial beam

decrease as the stiffness of the constituents decrease. Therefore, one effect of ignoring the

temperature dependence of the stiffness is that the resulting stresses are overestimated.

Another reason the present solution overestimates the stresses is that it ignores the mech-

anism of yielding which is known to relieve stresses in nonbrittle materials. It is therefore

reasonable to postulate that, if the simple solution fails to predict damage, yielding, or
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failure, the actual state of stress and displacement in the material will be less damaging.

It is therefore possible to use this solution as an aid in determining whether failure due

to thermal stresses will or will not occur in a particular situation. Bear in mind that the

original problem is inherently quite complex. The strength of materials solution presented

herein has in no way been presented as an accurate solution to the complex problem. Nev-

ertheless, it provides a quick and simple estimate of thermal stresses in certain types of

composite materials.

7.4 Summary

A simple engineering technique was developed to obtain closed-form solutions to

layered beam problems subjected to quite arbitrary temperature distributions. The most

important contribution of this research is the extension of Suhir's simple solution technique

to apply to problems with nonuniform, transient temperature distributions. The solution is

based on Bernoulli-Euler beam theory which allows an engineer to make rapid calculations

which are quite accurate throughout the vast majority of the beam. It is proposed that

the solution obtained in this research provides a suitable engineering approximation to

thermal stress problems in certain structures with complicated nonuniform temperature

distributions.

In the author's estimation the biggest limitation of the present solution is that it

cannot be used to address the problem of free-edge delamination. In most of the cases

considered, the free-edge peeling stress was compressive, tending to prevent delamination.

In some cases, however, it was tensile and therefore could cause delamination to occur. In

any event, the beam theory solutions do not apply within a boundary layer thickness of

the free edge. In this region, the thickness of which is on the order of the beam thickness,

the stresses are not believed to be reliable. Both the magnitude and sign of stresses in this

small region may be incorrect. In spite of these shortcomings, the solution is still useful

in determining the depth to which material failure may be expected to occur. Assume, for

example, that we use the proposed solution technique to analyze a beam and the resulting

interlaminar shear stress turns out to exceed the matrix material strength. If the distance

over which the excessive stress exists is shorter than the boundary layer thickness, we
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can really say nothing at all, for the solution is unreliable within this boundary layer.

If, on the other hand, the distance is N boundary layer thicknesses, we can conclude

with confidence that failure will not occur beyond N boundary layer thicknesses into the

material. The present solution would predict failure in the region between one and N

boundary layer thicknesses thick. The overestimating nature of the solution means that

stresses are probably lower than predicted and the failure would actually occur over a

shorter region, if at all.

The current simplified analysis provides an inexpensive and attractive means by

which potential problem areas can be identified in aerospace structures subject to high

heating loads. Given a design concept, simple analyses such as the one presented in this

dissertation can be used quickly to identify areas of concern in large structures. The

solution is presented as a means by which engineers and researchers can quickly obtain

estimates of the thermal stresses in high-temperature composite and dissimilar material

configurations.

7-10



Bibliography

1. J. W. Cardinal, et al. Structural Failure Analyses of Filament Wound Pres-
surized Cylinders Subject to Continuous Wave Laser Irradiation. Technical
Report AFWL-TR-87-48, Air Force Weapons Laboratory, Kirtland Air Force Base,
New Mexico, June 1988.

2. M. A. Tamm, August 10, 1988. NRL Memorandum Report 6248: Composite
Bottle Failure by Elongated Spot CW Laser Irradiation LTH-1 Lethality
Enhancement Study.

3. W. F. Bozich, A. D. Straw, D. Bell, R. Farahmand and E. M. Olsen. Space-Based
Laser (SBL) Liquid Booster Vulnerability Program. Volume 4. Vulner-
ability Assessment (U). Technical Report AFWL-TR-89-64-VOL-4, Air Force
Weapons Laboratory, Kirtland Air Force Base, New Mexico, September 1990, (SE-
CRET).

4. E. M. Olsen and T. J. Keliher. Solid Booster Vulnerability Program. Volume
1. Analytic Modeling and Subscale Tests (U). Technical Report AFWL-TR-
89-13-VOL-i, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico,
May 1990, (SECRET).

5. D. A. Simons. Simplified Models for Motorcase Vulnerability to Lasers. Tech-
nical Report DNA-TR-91-2, Defense Nuclear Agency, Alexandria, Va, June 1991.

6. H. A. Hogan and S. J. Harbert. Improved Modelling of the Response of Pres-
surized Composite Cylinders to Laser Damage, 31 December, 1990. 1989
USAF-UES Research Initiation Program, Final Report to WL/TALE Kirtland Air
Force Base, New Mexico, Contract No. F49620-88-C-0053/SB5881-0378.

7. B. A. Boley and J. H. Weiner. Theory of Thermal Stresses. John Wiley & Sons,
New York, 1960.

8. S. P. Timoshenko. Analysis of Bi-Metal Thermostats. Journal of the Optical
Society of America, 11:233-255, 1925.

9. J. Dundurs. Effect of Elastic Constants on Stress in a Composite Under
Plane Deformation. Journal of Composite Materials, 1:310-322, 1967.

10. J. Dundurs. Discussion of D. B. Bogy's "Edge-Bonded Dissimilar Orthogo-
nal Elastic Wedges under Normal and Shear Loading,". Journal of Applied
Mechanics, 36:650-652, 1969.

11. D. B. Bogy. Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under
Normal and Shear Loading. Journal of Applied Mechanics, 35:460-466, 1968.

12. D. B. Bogy. On the Problem of Edge-Bonded Elastic Quarter-Planes Loaded
at the Boundary. International Journal of Solids and Structures, 6:1287-1313, 1970.

13. I. S. Raju, J. D. Whitcomb and J. G. Goree. A New Look at Numerical Analyses
of Free- Edge Stresses in Composite Laminates. Technical Report NASA TN-
1751, NASA, December 1980.

BIB-I



14. F. Delale. Stress Singularities in Bonded Aristopian Materials. International
Journal of Solids and Structures, 20(1):31-40, 1984.

15. J. P. Blanchard and N. M. Ghoniem. An Eigenfunction Approach to Singular
Thermal Stresses in Bonded Strips. Journal of Thermal Stresses, 12:501-527,
1989.

16. D. Munz, T. Fett and Y. Y. Yang. The Regular Stress Term in Bonded Dissimi-
lar Materials after a Change in Temperature. Engineering Fracture Mechanics,

44:185-194, 1993.

17. D. Munz and Y. Y. Yang. Stresses Near the Edge of Bonded Dissimilar Ma-
terials Described by Two Stress Intensity Factors. International Journal of
Fracture, 60:169-177, 1993.

18. J. N. Goodier. On the Integration of the Thermo-Elastic Equations. Philo-
sophical Magazine, 23:1017-1032, 1937.

19. R. B. Pipes and N. J. Pagano. Interlaminar Stresses in Composite Laminates
under Uniform Axial Extension. Journal of Composite Materials, 4:538, 1970.

20. A. 11. Puppo and H. A. Evensen. Interlaminar Shear in Laminated Composites
under Generalized Plane Stress. Journal of Composite Materials, 4:204, 1970.

21. M. Goland and E. Reissner. The Stresses in Cemented Joints. Journal of Applied
Mechanics, 11:A17-A27, 1944.

22. C. E. S. Ueng and K. D. Zhang. A Simplified Approach for Interlaminar
Stresses in Orthotropic Laminated Strips. Journal of Reinforced Plastics and
Composites, 4:273-286, July 1985.

23. X. L. and D. Liu. An Interlaminar Shear Stress Continuity Theory for Both
Thin and Thick Composite Laminates. Journal of Applied Mechanics, 6:502-509,
September 1992.

24. C. Kassapoglou and P. A. Lagace. Closed Form Solutions for the Interlaminar
Stress Field in Angle-Ply and Cross-Ply Laminates. Journal of Composite
Materials, 21:292-308, April 1987.

25. N. 0. Myklestad. Two Problems of Thermal Stress in the Infinite Solid.
Journal of Applied Mechanics, 14:A136-A143, 1942.

26. C. D. Pionke and G. Wempner. The Various Approximations of the Bimetallic
Thermostatic Strip. Journal of Applied Mechanics, 58:1015-1020, December 1991.

27. D. Chen, S. Cheng and T. D. Gerhardt. Thermal Stresses in Laminated Beams.
Journal of Thermal Stresses, 5:67-84, 1982.

28. H. E. Williams. Asymptotic Analysis of the Thermal Stresses in a Two-Layer
Composite with an Adhesive Layer. Journal of Thermal Stresses, 8:183-203,
1985.

29. K. Seo, M. Kusaka, F. Nogata, T. Terasaki, Y. Nakao and K. Saida. Study on the
Thermal Stress at Ceramics- Metal Joint. JSME International Journal, Series
1, 33(3):342-348, 1990.

BIB-2



30. W. T. Chen and C. W. Nelson. Thermal Stress in Bonded Joints. IBM Journal
of Research and Development, 23(2):179-188, March 1979.

31. Y. Weitsman. Stresses in Adhesive Joints Due to Moisture and Temperature.
Journal of Composite Materials, 11:378-394, October 1977.

32. E. Suhir. Stresses in Bi-Metal Thermostats. Journal of Applied Mechanics,
53:657-660, September 1986.

33. E. Suhir. Interfacial Stresses in Bimetal Thermostats. Journal of Applied
Mechanics, 56:595-600, September 1989.

34. S. K. Morton and J. P. H. Webber. Interlaminar Failure Due to Mechanincal
and Thermal Stresses at the Free Edges of Laminated Plates. Composites
Science and Technology, 47:1-13, 1993.

35. A. Y. Kuo. Thermal Stresses at the Edge of a Bimetallic Thermostat. Journal
of Applied Mechanics, 56:585-589, 1989.

36. 0. 0. Ochoa and V. M. Marcano. Thermal Stresses in Laminated Beams.
International Journal of Solids Structures, 20:579-587, 1984.

37. H. E. Williams. Thermal Stresses in Bonded Solar Cells-the Effect of the
Adhesive Layer. Journal of Thermal Stresses, 6:231-252, 1983.

38. M. Y. Tsai and J. Morton. The Stresses in a Thermally Loaded Bimaterial
Interface. International Journal of Solids and Structures, 28:1053-1075, 1991.

39. W. L. Yin. Effects of Inclined Free Edges on the Thermal Stresses in a
Layered Beam. Journal of Electronic Packaging, 115:208-213, 1993.

40. Y. Y. Yang and D. Munz. Determination of the Regular Stress Term in a Dis-
similar Materials Joint under Thermal Loading by the Mellin Transform.
Journal of Thermal Stresses, 17:321-336, 1994.

41. Y. W. Kwon, D. Salinas and M. J. Neibert. Thermally Induced Stresses in a
Trilayered System. Journal of Thermal Stresses, 17:489-506, 1994.

42. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals Series and Products.
Academic Press, New York, 1965.

43. G. L. Camburn, J. R. Lippert and G. Maddux. Response of Compression-Loaded
Graphite Epoxy Laminates to Laser Energy. Technical Report AFFDL TR-76-
127, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, November
1976.

44. N. A. Waterman and M. F. Ashby. CRC-Elsevier Materials Selector. CRC Press,
Ann Arbor, Michigan, 1991.

45. ASM Handbook Committee. Metals Handbook, Ninth Edition, Vol 2, Prop-
erties and Selection: Nonferrous Alloys and Pure Metals. American Society
for Metals.

46. J. P. Holman. Heat Transfer. McGraw-Hill Book Company, New York, 1981.

47. L. J. Broutman and R. H. Krock. Composite Materials, Volume 5, Fracture
and Fatigue. Academic Press, New York, 1974.

BIB-3



48. G. Lubin. Handbook of Composites. Van Nostrand Reinhold Company, New
York, 1982.

49. R. H. Perry and C. H. Chilton. Chemical Engineers' Handbook, Fifth Edition.
McGraw-Hill, New York, 1973.

50. M. N. Ozi§ik. Heat Conduction. John Wiley and Sons, New York, 1980.

51. R. 0. Rivello. Theory and Analysis of Flight Structures. McGraw-Hill Book
Company, New York, 1969.

BIB-4



Major Jerry Rodney (Rod) . . . ...

u He grlduated from High School in Monroe, North Carolina in 1976 and attended

High Point College. High Point, North Carolina, from which he received the Bachelor of

Science degree in Mathematics in May 1980. He worked as a computer programmer/analyst

at Duke Power Company, Charlotte, North Carolina, until he entered the United States

Air Force Officer Training School in May 1982. Upon his graduation from Officer Training

School, he was commissioned a Second Lieutenant in the Air Force and was assigned to the

Air Force Institute of Technology, from which he earned the Bachelor of Science degree in

Aeronautical Engineering in March 1984 mi d the Master or Science degree in Aeronautical

Engineering in March 198Z5. His master's thesis dealt with the subject of the thermal

coupling of pulsed laser energy into metals. Following his graduation. Major Conick was

assigned to the Air Force Weapons Laboratory at Kirtland AFB, New Mexico, where he

served as a Laser Effert- and Vulnerability Engineer for one year and as Chief of the Laser

Test Facility for four years. In July 1990 he wn selected to attend the Air Force Institute

of Tecknoloy as a doctoral stident. He entered the Doctor of Philosophy degree program

in October 1990 and was admitted to candidacy in September 1992, with a major In solid

mechanics and: a minor in het transfer. Following his admission to candidacy, he has

performed research on the thermal stresses In layered dissimilar materials, working under

the advice and guidance of Professor Peter J. Torvik of the Department of Aeronautics and

Astronautics. In September 1993, Major Couick was assigned to Wriglht Laborabory as

Thermal Structures Research Team leader, where he continued research on his dissertation

on a patt-time basis.

- " _ V -l..

VITA.1

ADA306532



Form Approved
REPORT DOCUMENTATION PAGE O0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

30 Nov 95 Dissertation, Dec 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Thermal Stresses in End-Heated Layered Media

6. AUTHOR(S)

Jerry R. Couick, Major, USAF
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

AFIT/ENY
2950 P Street
Wright-Patterson AFB OH 45433 AFIT/DS/ENY/95-6

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Christopher Clay
WL/FIBEB, Bldg 45
2130 Eighth Street Suite 1
Wright-Patterson AFB OH 45433-7542

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited
13. ABSTRACT (Maximum 200 words) Thermal stresses in semi-infinite layered beams heated on
the end are calculated using an extension to simple bimetallic thermostat theory.
Recently, researchers have used the concept of interfacial compliance to determine
interlaminar stresses in a simple thermostat of finite length subjected to a
uniform temperature increase. In the present work, the thermostat theory is ex-
tended to apply to the beams of interest. A closed-form solution to the problem
is obtained. It is not applicable within about one beam thickness (St Venant
boundary region) of the end. Various classes of layered materials are analyzed to
determine if significant stresses exist outside the boundary region. Thermal
stresses of sufficient magnitude to cause failure are confined to the boundary
region if all layers of the beam are poor thermal conductors. Significant axial
and bending stresses occur outside of the boundary region for layered beams in
which one or more layers are relatively good thermal conductors. Very high
stresses are found to exist in good conductors bonded to poor conductors of
similar stiffness., Significant interlaminar stresses occur only in the boundary
region, regardless of the layer thermal conductivities. The applicability of the
solution to composite laminates is addressed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

137
Thermal Stresses, Dissimilar Materials, Layered Media, 16. PRICE CODE
Thermostats, Nonuniform Temperature

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
299-102



GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S e e o n Technical
applicable, enter inclusive report dates (e.g. 10 Statements on TechnicalJun8730Ju 8).Documents."
Jun 87 - 30 Jun 88). DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in parentheses. DOE -Enter DOE distribution categories

from the Standard Distribution for
Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subject Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in
Block g. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO: 1993-O-336-043 Standard Form 298 Back (Rev. 2-89)


